Safety Companion

Submitted in partial fulfilment of the requirements

of the degree of

BACHELOR OF ENGINEERING in INFORMATION TECHNOLGY (A.Y. 2018-2019)

by

Harsh Agarwal (Roll No.:03) Priyank Dave (Roll No.:24) Tanish Jain (Roll No.:39)

Under the Guidance of Mrs. Purvi Sankhe Assistant Professor, I.T Department, TCET

Estd. in 2001

Choice Based Credit Grading System with Holistic Student Development

(CBCGS-H 2019)

Zagdu Singh Charitable Trust's (Regd.)

Certificate

This is to certify that Mr. Harsh Agarwal, Mr. Priyank Dave, Mr. Tanish Jain are bonafide students of Information Technology Department, Thakur College of Engineering and Technology, Mumbai. They have satisfactorily completed the requirements of PROJEC Under Project Based Learning as prescribed by **Thakur College of Engineering and Technology** (**An Autonomous College affiliated to University of Mumbai**), while working on "Safety Companion".

Signature	e :		
Name	: Mrs. Purvi Sankhe	Signatur	e :
	AP-IT	Name	: Dr. Rajesh S. Bansode HOD-IT
	Signature: Name : Dr. B. K. M Principal,	lishra	
	Thakur College of Eng	ineering and	Technology.
Internal	Examiner:		External Examiner:
Internal Signature	Examiner:	- Signature	External Examiner:
Internal Signature	Examiner:	Signature Name :	External Examiner:
Internal Signature e : Thaku	Examiner:	Signature Name : nd Technolog	External Examiner:
Internal Signature e : Thake Date:	Examiner:	Signature Name : nd Technolog	External Examiner:
Internal Signature e : Thake Date: Place:	Examiner:	Signature Name : nd Technolog	External Examiner:

DECLARATION

I/we declare that this written submission represents my/our ideas in my/our own words and where others ideas or words have been included, I/we have adequately cited and referenced the original sources. I/we also declare that I/we have adhered to all principles of academic honesty and integrity and have not misrepresented or fabricated or falsified any idea/data/fact/source in my/our submission. I/we understand that any violation of the above will because for disciplinary action by the Institute and can also evoke penal action from the sources which have thus not been properly cited or from whom proper permission has not been taken when needed.

1	
1	

Harsh Agarwal (Roll No. : 03)

2. -----

Priyank Dave (Roll No. : 24)

3. -----

Tanish Jain (Roll No. : 39)

Date:

ABSTRACT

Engineers and researchers in the automobile industry have tried to design and build safer automobiles, but traffic accidents are unavoidable. Today, traffic safety is one of the main priorities of governments. Road accidents may not be stopped altogether, but can be reduced. Driver emotions such as sad, happy, and anger can be one reason for accidents. At the same time, environment conditions such as weather, traffic on the road, load in the vehicle, type of road, health condition of driver, and speed can also be the reasons for accidents.

Considering the importance of topic, identifying the factors of road accidents has become the main aim to reduce the damage caused by traffic accidents. Data mining allows users to analyze data from many different dimensions or angles, categorize it and summarize the relationships identified. Technically, data mining is the process of finding correlations or patterns among dozens of fields in large relational databases. One of the key objectives in accident data analysis is to identify the main factors associated with a road and traffic accident. Association rule mining is used to identify the various circumstances that are associated with the occurrence of an accident. Patterns involved in dangerous crashes could be detected if we develop accurate prediction models capable of automatic classification of type of injury severity of various traffic accidents. These behavioral and roadway accident patterns can be useful to develop traffic safety control policies.

	List of Figures	
		Page No.
Fig.2.5.1	KDD Process	15
Fig.2.5.2	Scrum	17
Fig.3.3.1	Phases of project development	21
Fig.3.4.1	Gnatt Chart	24
Fig.4.2.1	Block Diagram	27
Fig.4.3.1	Flowchart	28
Fig.4.4.1	Database Screenshot	29

CONTENTS

•	Certificate	i
•	Declaration	ii
•	Abstract	iii
•	List of Figures	iv
•	List of Tables	v
•	List of Tables	vi

Chapter No.

Topic

Pg .No.

Chapter1	Overvi	iew	1
	1.1	Introduction	02
	1.2	Background	03
	1.3	Importance of the Project	03
	1.4	Objectives and Scope of the Project	03
	1.5	Summary	04
Chapter2	er2 Literature Survey & Proposed Work		5
	2.1	Introduction	06
	2.2	Literature Survey Table	06
	2.3	Problem definition	14
	2.4	Features of the Project	14
	2.5	Methodology Used	15
Chapter3	Analys	sis and Planning	19
	3.1	Introduction	20
	3.2	Feasibility Study	20
	3.3	Project planning	21
	3.4	Scheduling	24
Chapter4	Desig	n and Implementation	26
	4.1	Model Requirements	27
	4.2	Block Diagram	27
	4.3	Flow Chart	28

	4.4 Database screenshot (if any)	29
Chapter 5	Results & Discussion	30
	5.1 Results (screen shots of results with description)	31
	5.2 Future Scope	31
Chapter 6	Conclusion	32
	6.1 Conclusion	33
	References	34

CHAPTER 1 OVERVIEW

1.1 Introduction

Today, traffic safety is one of the main priorities of governments. Considering the importance of topic, identifying the factors of road accidents has become the main aim to reduce the damage caused by traffic accidents. Road safety means development and management of roads, provision of safer vehicles, and a comprehensive response to accidents. The costs of fatalities and injuries due to traffic accidents have a great impact on the society. In recent years, researchers have paid increasing attention to determining factors that significantly affect severity of driver injuries caused by traffic accidents.

Data mining is the process of analyzing data from different perspectives and summarizing it into useful information. It allows users to analyze data from many different dimensions or angles, categorize it and summarize the relationships identified. Driver emotions such as sad, happy, and anger can be one reason for accidents. At the same time, environment conditions such as weather, traffic on the road, load in the vehicle, type of road, health condition of driver, and speed can also be the reasons for accidents.

Hidden patterns in accidents can be extracted so as to find the common features between accidents. Applying data mining techniques to model traffic accident data records can help to understand the characteristics of drivers' behavior, roadway condition and weather condition that were causally connected with different injury severity. We will use different machine learning algorithms to analyze those hidden patterns. This can help decision makers to formulate better traffic safety control policies.

1.2 Background

Road accidents severity is increasing at alarming rate. Regulating the traffic accidents on roads is a vital task. Road safety becomes a major public health concern when the statistics show that more than 3000 people around the world succumb to death daily due to road traffic injury. The huge econmic losses are an economic burden for developing countries. The road data are necessary not only for statistical analysis in setting priority targets but also for in-depth study in identifying the contributory factors to have a better understanding of the chain of events.

1.3 Importance of Project

In order to reduce the number and severity of traffic accidents, the reasons and the main factors should be known. Although, the driver' fault is the main reason in most of the accidents, physical environment can cause accidents. The capacity, type, material and surface of road, the presence of traffic light, lightening degree, lane, pedestrian-way, crossings and intersection can affect the occurrence of accident. Traffic accidents reduce level of traffic safety and cause traffic congestions. In order to increase the level of traffic safety, it is necessary to ensure that the causes of accidents are revealed and the risks are minimized.

1.4 Objectives and Scope of the Project

Road accident analysis can help in saving lives of many people. Road accidents has many reasons behind it. They include technical failure, driving unconsciously, etc. Thus, to study all these factors and provide solutions to those problems is the major objective of the project.

The following are the objectives of the project:

- 1. To collect data of a particular region on the globe.
- 2. To generate analysis report of those data using the KDD process
- 3. To generate solutions in terms of construction of road infrastructure that can help in preventing the crashes.
- 4. To help save life of people and infrastructure

Scope:

This analysis models has a great scope in current scenario and in future. The current scope is that we have a roadways highways that have steep turns and narrow roads and roots because of which there are chances of accidents i.e. there are more road accident prone regions, we can arrange a safety mechanism that protects the crashes of the vehicles. Future scope is that there can be a system with a similar framework can help in crime forensics .i.e. there can be a system that can help in crime investigation department and Intelligence Department.

1.5 Summary

The chapter consists of the introduction to the concept the background of the title selected and discuss about the why this project is important the scope of it etc.

CHAPTER 2 LITERATURE SURVEY & PROPOSED WORK

2.1 Introduction

A writing literature review surveys overview insightful articles, books, papers, gathering procedures and different assets which are pertinent to a specific issue, zone of research, or hypothesis and gives a setting to an exposition by recognizing past research. Research recounts a story and the current writing causes us to recognize where we are in the story as of now. It is up to that composition a paper to proceed with that story with new research and new points of view yet they should initially be comfortable with the story before they can push ahead.

2.2 Literature Survey Table

Ref	Year	Authors	Title	Methodology	Key findings	Research
No.						gaps
[1]	2018		Extracting		Used EM	The
		S.Vasavi	Hidden		clustering	performan
			Patterns	Accident Data Pre- Relevance Analysis Dataset processing (Attribute Selection	and K-	ce of the
			Within	(Data Cleaning) Measures)	medoid	EM
			Road	Clustering Algorithms (k-Clusters)	method to	clustering
			Accident		cluster the	is low
			Data Using	Association Rule	data	compared
			Machine	Mining (Hidden Patterns extraction)		to K-
			Learning			medoids
			Techniques	Visualization of		clustering
				pressilly		Algorithm,

Table no.2.2.1: Literature Survey Table

						because it uses probability measures to cluster the data.
2]	2018	Sannaila Praveen Kumar, M. Prashant i	Road Accident Data Analysis Using Machine Learning	Association rule mining is applied on dataset to find the feasible rules that are mostly contributing the road accidents. Feature selection is applied on the pre- processed dataset to find most effecting rules in road accidents by selecting the appropriate attributes	This paper proposed apriori algorithm and feature selection method to find the most effecting rules that are contributing the road accidents. This paper implemented accidents. This paper learning algorithm to find the contributing factor of vehicle speed in road accidents.	Apriori algorithm includes a lot of iterations

[3]	2018	Shrishti	А	A. Data Collection	Use of linear	The
		Sonal,	framework		regression	machine
		Saumya	for analysis	B. Analysis and	model	learning
		Suman	of road	implementation	Tools-Python	algorithms
			accidents		and	can be
					Anaconda.	optimized
						when
						more than
						one
						algorithm
						are used
						together to
						generate
						the
						required
						output
						with more
						accuracy.
						Hence a
						lack of
						accuracy
						can affect
						the quality
						of
						predicted
						results.
[4]	2017	Poojitha	Analysis of	Step1:Apply Association	1. Used	Apriori
		Shetty,	Road	rule for generating pattern	Apriori	algorithm
		Sachin P	Accidents	and to find which attribute	Algorithm for	require
		С,	using data	value or item is bound	finding	large
		Supreeth	mining	with the other how	Association	amount of
		V	techniques	strongly	rule among	data
		Kashyap	Published in		the items of	storage as
		,	Internationa	Step2: Classification of	transitions in	it
		Venkate	1 Research	the accident	each	generates
		sh Madi	Journal of		individual	candidates
			Engineering		dataset based	table first
			and		on support	which
			Technology		and	consists of
1	1	1		1	1	1

			£.1	1 •
		(IKJET)	confidence	analyzing
			2. Used	the dataset
			Inalve Bayes	for each
			algorithm for	data
			classification	item(Time
				complexit
				y=n ⁿ
				where n is
				number of
				items or
				values in
				the
				dataset)
				hence it
				takes a lot
				of time to
				generate
				patterns
				for a
				dataset of
				2MB
				Uses of FP
				growth
				can be
				made in
				order to
				perform
				associatio
				n as it
				provides
				better
				latency.
				2. Similarl
				у
				instead of
				naïve
				bayes,
				Decision
				tree based
				classificati

						on can also be done in order to get the prediction of type of road accident
[5]	2017	Ms. Gagande ep Kaur, Er. Harpreet kaur	Prediction of the cause of accident and accident prone location on roads using data mining techniques	The Methodology is applied using R's IDE Integrated Development Environment (Rstudio) which is graphical and statistical computing tool on road accidental dataset for analyzation. R is free software, GNU package used for analyzing the datasets to vaticinate the hidden patterns and trends.	Regression and Co- relation models used for analysis of the accident data.	Neural networks are the better way to predict and analyze things in a better way and in a more accurate way with the help of various parameters
[6]	2017	Priyanka A. Nandurg e, Nagraj V. Dharwad hkar	Analyzing road accident data using machine learning paradigms.	Dataset Data set Data set Data Re-processing K-means Clustering Algorithm Clustering Algorithm Clustering Algorithm Apriori Algorithm Association Rule Nule	Segmentatio n is used to reduce data heterogeneity using a number of measures such as expert knowledge, but there is no guarantee	The main difficulty of clustering algorithm is to estimate the number of clusters. In k-means clustering,

			that this will	value of k
			result in the	must be
			best	given by
			segmentation	the user
			of the group	which is
			including	one of the
			road	limitations
			accidents.	of this
			Cluster	algorithm.
			analysis can	If the
			helps to	value of k
			segment road	is
			accidents	incorrect
			data.	then it
				may lead
				to
				incorrect
				clustering
				results.

[7]	2005	Miao	Traffic	Step1: Gather the Dataset.	1.Decision	1. CART
		Chong,	accident		Tree:	does not
		Aiith	analysis	Step2: Provide the dataset	Classificatio	use
		Abraha	using	to different kinds of ML	n and	combinati
		m and	machine	paradigms (such as ANN	Regression	ons of
		Marcin	learning	Decision Tree and SVM	Tree (CART)	variables
		Paprzyc	paradigms		is use in	Also a
		ki	puluaignis	1 Decision Tree	which each	small
		M		Based on the dataset	internal node	change in
				certain rules are formed	in the tree	the data
				by scanning the dataset	specifies a	can lead to
				Based on these rules the	binary test on	a large
				prediction takes place	a single	change in
				prediction takes prace.	variable	the
				2. Support Vector	branch	structure
				Machines(SVM)	represents an	of the
				SVM involves two key	outcome of	optimal
				techniques one is the	the test each	decision
				mathematical	leaf node	tree
				programming and the	represent	tice.
				other is kernel functions	class labels	2 SVM
				Input vectors are mapped	or class	require
				in a space linearly or non-	distribution	more
				linearly (depending on	ansunoution	speed and
				kernel function)	2. Support	size
				A hyperplane is	Vector	requireme
				constructed for seperation	Machines(S	nts both in
				of classes Based on the	VM):	training
				intersection and distance		and in
				between hyperplanes, the	3. Artificial	testing.
				support vector algorithm	Neural	
				increases the distance	Network(AN	3. If the
				between the hyperplanes	N):	neural
				to occupy more positives		network is
				When the two classes are		large then
				non-linearly seperable		the
				SVM transforms the		processing
				points into higher		time
				dimensional space.		required is
				shoren space.		high. The

2.3 Problem Definition

The main objective of this project is to investigate the role of human, vehicle, and infrastructure-related factors i.e. both internal and external parameters in accident severity by applying machine learning techniques on road accident data. The phases in which a part of problem will be solved.

Phase1: Data collection and Data gathering clearing the data and generating it in a single format so that it can be processed easily without any error.

Phase2: Understanding the dataset what all parameters it consists of and how the attributes in the dataset are interrelated to each other and to see in what way algorithms can be used to generate the frequent valuable pattern using certain algorithms like clustering, association rule mining, correlation and regression model (Big Data Analytics) to know how we can apply artificial neural network to it.

Phase3: Implementing the artificial neural network for generating the road accident pattern for the dataset. Understanding, how for a particular regions the internal and external parameters affect.

Phase4: Generating solutions to avoid the reasons that cause the accident

2.4 Features of the Project

The project is analysis based project hence the features of this project are as:

- 1. Better accuracy in regards to algorithms used to perform certain analysis
- 2. Analysis on real time data set (Original dataset)
- 3. Works on the historical data available hence effective

2.5 Methodology Used

Fig.2.5.1: KDD process

For implementing the given problem definition, the classical KDD (Knowledge Discovery in Database) process which refers to non- trivial extraction of implicit, previously unknown and potentially useful information from the data stored in databases. This process is going to be used which involves the following:

- 1. Data Cleaning: Data cleaning is defined as removal of noisy and irrelevant data from collection.
 - i. Cleaning in case of Missing values.
 - ii. Cleaning noisy data, where noise is a random or variance error.
 - iii. Cleaning with Data discrepancy detection and Data transformation tools.
- 2. Data Integration: Data integration is defined as heterogeneous data from multiple sources combined in a common source (Data Warehouse).
 - i. Data integration using Data Migration tools.
 - ii. Data integration using Data Synchronization tools.
 - iii. Data integration using ETL(Extract-Load-Transformation) process.
- 3. Data Selection: Data Selection: Data selection is defined as the process where data relevant to the analysis is decided and retrieved from the data collection.
 - i. Data selection using neural network.
 - ii. Data selection using Decision Trees.
 - iii. Data selection using Naive bayes.

- iv. Data selection using Clustering, Regression, etc.
- 4. Data Transformation: Data Transformation is defined as the process of transforming data into appropriate form required by mining procedure.

Data Transformation is a two-step process:

- i. Data Mapping: Assigning elements from source base to destination to capture transformations.
- ii. Code generation: Creation of the actual transformation program
- 5. Data Mining: Data mining is defined as clever techniques that are applied to extract patterns potentially useful.
 - i. Transforms task relevant data into patterns.
 - ii. Decides purpose of model using classification or characterization.
- 6. Pattern Evaluation: Pattern Evaluation is defined as as identifying strictly increasing patterns representing knowledge based on given measures.
 - i. Find interestingness score of each pattern.
 - ii. Uses summarization and Visualization to make data understandable by user.
- 7. Knowledge Representation: Knowledge representation is defined as technique which utilizes visualization tools to represent data mining results.
 - i. Generate reports.
 - ii. Generate tables.
 - iii. Generate discriminant rules, classification rules, characterization rules, etc.

Fig.2.5.2: SCRUM

Scrum is an innovative approach to getting work done in efficient way. It is iterative & incremental agile software development method. These iterations are time boxed with various iterations & each iteration is called Sprint. The Sprint is basically 2-4 week long & each sprint requires sprint planning estimation. According to latest surveys Scrum is the most popular agile project management methodology in software development.

Scrum is ideally used where highly emergent or rapidly changing requirements. Scrum is basically worked on a self-organizing, cross-functional team. In the overall scrum team there is no team leader who assign the task to team rather whole scrum members work as a team & they decides the task on which they will work on. Also the problem will be resolve by team.

Each Agile Development Scrum team having three core scrum roles: Product Owner, Scrum Master & The Team.

1) **Product Owner:** The Product Owner is the person who represents the stakeholders and is the voice of the customer. Product owner writes the User Stories, ordered priorities and add in the

Product Backlog. It is recommended that Agile Scrum Master should not mix with Product Owner.

2) Scrum Master: The Scrum-Master is a facilitator, team leader who ensures that the team adheres to its chosen process and removes blocking issues to deliver the sprint deliverable/goal. Scrum Master is not a team leader but act as a shield for the team from external interference's & also removes barriers.

3) The Team: The scrum development team is generally size of 5-9 peoples with self-organizing and cross-functional skills who do actual work like Analysis, Design, Development, Testing, Documentation etc.

CHAPTER 3

ANALYSIS & PLANNING

3.1 Introduction

Getting a clear idea of the project title and doing research on it we will get our definition and after that then we will first create the Literature Survey of the project and do the whole documentation. After analysis, we will first study about it and do some research on it for our better understanding of the project and also get a rough picture about what would be our problem definition for the particular project.

3.2 Feasibility Study

1. Technical Feasibility - This assessment focuses on the technical resources available to the organization. It helps organizations determine whether the technical resources meet capacity and whether the technical team is capable of converting the ideas into working systems. It also involves the evaluation of the hardware, software, and other technical requirements of the proposed system.

2. Economic Feasibility - This assessment typically involves a cost/ benefits analysis of the project, helping organizations determine the viability, cost, and benefits associated with a project before financial resources are allocated. It also serves as an independent project assessment and enhances project credibility— helping decision makers determine the positive economic benefits to the organization that the proposed project will provide.

3. Legal Feasibility - This assessment investigates whether any aspect of the proposed project conflicts with legal requirements like zoning laws, data protection acts, or social media laws. Let's say an organization wants to construct a new office building in a specific location. A feasibility study might rev

eal the organization's ideal location isn't zoned for that type of business. That organization has just saved considerable time and effort by learning that their project was not feasible right from the beginning.

4. Operational Feasibility - This assessment involves undertaking a study to analyze and determine whether—and how well—the organization's needs can be met by completing the project. Operational feasibility studies also analyze how a project plan satisfies the

requirements identified in the requirements analysis phase of system development.

5. Scheduling Feasibility - This assessment is the most important for project success; after all, a project will fail if not completed on time. In scheduling feasibility, an organization estimates how much time the project will take to complete.

3.3 Project Planning

Phases of the Project:S

Fig.3.3.1: Phases of project development

1. System Planning

The planning phase is the fundamental process of understanding why an information system should be built and determining how the project team will go about building it. It has two steps:

• During project initiation, the system's business value to the organization is identified how will it lower costs or increase revenues? Most ideas for new systems come from outside the IS area (from the marketing department, accounting department, etc.) in the form of a system request. A system request presents a brief summary of a business need, and it explains how a system that supports the need will create business value.

• Once the project is approved, it enters project management. During project management, the project manager creates a work plan, staffs the project, and puts techniques in place to help the project team control and direct the project through the entire SDLC.

2. System Analysis

The analysis phase answers the questions of who will use the system, what the system will do, and where and when it will be used. During this phase, the project team investigates any current system(s), identifies improvement. This phase has three steps:

- 1. An analysis strategy is developed to guide the project team's efforts. Such a strategy usually includes a study of the current system (called the as-is system) and its problems, and envisioning ways to design a new system (called the to-be system).
- 2. The next step is requirements gathering (e.g., through interviews, group workshops, or questionnaires). The analysis of this information—in conjunction with input from the project sponsor and many other people—leads to the development of a concept for a new system.
- 3. The analyses, system concept, and models are combined into a document called the system proposal, which is presented to the project sponsor and other key decision makers (e.g., members of the approval committee) who will decide whether the project should continue to move forward.

3. System Design

The design phase comes after a good understanding of customer's requirements, this phase defines the elements of a system, the components, the security level, modules, architecture and the different interfaces and type of data that goes through the system. The design phase decides how the system will operate in terms of the hardware, software, and network infrastructure that will be in place; the user interface, forms, and reports that will be used; and the specific programs, databases, and files that will be needed. The design phase has four steps:

- 1. The design strategy must be determined. This clarifies whether the system will be developed by the company's own programmers, whether its development will be outsourced to another firm (usually a consulting firm), or whether the company will buy an existing software package.
- 2. This leads to the development of the basic architecture design for the system that describes the hardware, software, and network infrastructure that will be used.
- 3. The database and file specifications are developed. These define exactly what data will be stored and where they will be stored.
- 4. The analyst team develops the program design, which defines the programs that need to be written and exactly what each program will do.

4. Implementation and Deployment

This phase comes after a complete understanding of system requirements and specifications, it's the actual construction process after having a complete and illustrated design for the requested system.

In the Software Development Life Cycle, the actual code is written here, and if the system contains hardware, then the implementation phase will contain configuration and fine-tuning for the hardware to meet certain requirements and functions.

In this phase, the system is ready to be deployed and installed in customer's premises, ready to become running, live and productive, training may be required for end users to make sure they know how to use the system and to get familiar with it, the implementation phase may take a long time and that depends on the complexity of the system and the solution it presents.

5. System Maintenance

In this phase, periodic maintenance for the system will be carried out to make sure that the system won't become obsolete, this will include replacing the old hardware and continuously evaluating system's performance, it also includes providing latest updates for certain components to make sure it meets the right standards and the latest technologies to face current security threats. These are the main six phases of the System Development Life Cycle, and it's an iterative process for each project.

3.4 Scheduling

Gantt chart:

It shows the representation of each day of the work from the Selection of Project Title to its Testing.

In this after understanding the topic the project feasibility was analyzed by performing different types of feasibility studies and by also planning the project tools, their project schedule, timeline charts, etc. Feasibility study will help in better understanding the various feasibilities associated with the project and helping to make the correct decisions and completing the project within the schedule, budget, etc.

The tools were specifically identified in this chapter stating which technology can be feasible and how conveniently the project can be completed. This helps to understand the technology and tools that can be used for the project. The Gantt chart helps us to track the project and see the schedule of the project and to see if the project is on the right track and on schedule and not behind the deadline

CHAPTER 4

DESIGN & IMPLEMENTATION

4.1 Model Requirements

The Model requirements for our project are as follows:

- **i. Dataset:** Large data sets are first sorted, then patterns are identified and relationships are established to perform data analysis and solve problems.
- ii. **Anaconda:** Anaconda is a free and open-source distribution of the Python and R programming languages for scientific computing, that aims to simplify package management and deployment. Package versions are managed by the package management system conda.
- iii. Algorithms: In today's world of "big data", a large database is becoming a norm. Just imagine a database with many terabytes. As facebook alone crunches 600 terabytes of new data every single day. Also, the primary challenge of big data is how to make sense of it. Moreover, the sheer volume is not the only problem. Also, big data need to diverse, unstructured and fast changing. Consider audio and video data, social media posts, 3D data or geospatial data. This kind of data is not easily categorized or organized. Further, to meet this challenge, a range of automatic methods for extracting information.

4.2 Block Diagram

Road Analysis Datasets from different Sources	Road Analysis Dataset after cleaning
	Л
	Machine Learning Algorithms
	₹7
[Patterns & Graphs Knowledge
	Recents & Graphs

Fig.: Block diagram

4.3 Flow Chart

Fig.4.3.1: flowchart

4.4 Database Screenshot

	Α	В	C	D	E	F	G	Н	I.	J	K	L	М	N	0	Р	Q
1	Reference	Grid Ref:	Grid Ref:	Number o	Accident	l Time (24h	1st Road (Road Surf	Lighting Conditions	Weather Condition	Casualt	y Class	Casualty	Se Sex of Ca	Age of Ca	sualty	
2	1.3E+08	426983	433434	3	15-Jan-13	1545	Unclassifi	Dry	Daylight: street light	Fine without high	1	Driver	Slight	Male	42	Car	
3	1.3E+08	424366	445442	2	15-Jan-13	1640	Α	Frost / Ice	Darkness: street ligh	l Other	2	Passer	Slight	Female	78	Car	
4	1.3E+08	424481	435632	2	13-Jan-13	1345	Unclassifi	Wet / Dar	Daylight: street light	Fine without high	1	Driver	Serious	Male	34	Motorcycle	e over 125cc a
5	1.3E+08	430284	432421	1	15-Jan-13	1313	Unclassifi	Dry	Daylight: street light	Fine without high	3	Pedest	Slight	Male	47	Car	
6	1.3E+08	430374	433485	1	16-Jan-13	2015	Unclassifi	Dry	Darkness: street light	l Fine without high	2	Passer	Serious	Male	65	Bus or coad	ch (17 or mor
7	1.3E+08	429794	433923	2	16-Jan-13	2100	Unclassifi	Wet / Dar	Darkness: street ligh	l Fine with high wi	1	Driver	Slight	Male	30	Car	
8	1.3E+08	429794	433923	2	16-Jan-13	2100	Unclassifi	Wet / Dar	Darkness: street ligh	t Fine with high wi	1	Driver	Slight	Female	32	Car	
9	1.3E+08	433157	435244	2	16-Jan-13	1305	Unclassifi	Dry	Daylight: street light	Fine without high	1	Driver	Slight	Male	26	Car	
10	1.3E+08	433157	435244	2	16-Jan-13	1305	Unclassifi	Dry	Daylight: street light	Fine without high	1	Driver	Slight	Male	70	Car	
11	1.3E+08	433157	435244	2	16-Jan-13	1305	Unclassifi	Dry	Daylight: street light	Fine without high	2	Passer	Slight	Female	60	Car	
12	1.3E+08	436252	435822	2	16-Jan-13	1630	Unclassifi	Dry	Daylight: street light	Fine without high	1	Driver	Slight	Male	39	Car	
13	1.3E+08	425888	429880	2	18-Jan-13	710	Α	Dry	Darkness: street ligh	Fine without high	1	Driver	Slight	Male	35	Pedal cycle	2
14	1.3E+08	434857	428434	1	18-Jan-13	1250	Unclassifi	Frost / Ice	Daylight: street light	Fine without high	1	Driver	Slight	Male	82	Car	
15	1.3E+08	430877	433880	1	18-Jan-13	2100	Unclassifi	Snow	Darkness: street ligh	Snowing without	1	Driver	Slight	Male	27	Car	
16	1.3E+08	430877	433880	1	18-Jan-13	2100	Unclassifi	Snow	Darkness: street ligh	Snowing without	2	Passer	Slight	Male	20	Car	
17	1.3E+08	434813	427913	1	20-Jan-13	1	Unclassifi	Frost / Ice	Darkness: street ligh	l Fine without high	1	Driver	Slight	Male	25	Car	
18	1.3E+08	434813	427913	1	20-Jan-13	1	Unclassifi	Frost / Ice	Darkness: street ligh	l Fine without high	2	Passer	Slight	Female	38	Car	
19	1.3E+08	434813	427913	1	20-Jan-13	1	Unclassifi	Frost / Ice	Darkness: street ligh	l Fine without high	2	Passer	Slight	Female	27	Car	
20	1.3E+08	424128	444004	2	20-Jan-13	1044	Α	Frost / Ice	Daylight: street light	Fine without high	1	Driver	Slight	Male	35	Pedal cycle	2
21	1.3E+08	431857	437833	1	19-Jan-13	1350	Unclassifi	Dry	Daylight: street light	Fine without high	3	Pedest	Slight	Female	42	Car	
22	1.3E+08	426701	429825	1	21-Jan-13	1151	Motorwa	Wet / Dar	Daylight: street light	Fine without high	2	Passer	Slight	Female	27	Car	
23	1.3E+08	426701	429825	1	21-Jan-13	1151	Motorwa	Wet / Dar	n Daylight: street light	Fine without high	2	Passer	Slight	Male	1	Car	
~	1 35100	100000	44070	2	01.1	1000	()(C	Na : = 4 4 4 : = 4	esta a calcada la calc		Dation	el:-l-t	Mala	20	·	
	1 1	2013	÷														

Fig.: Database Screenshot

Dataset size: 2420*14

Attributes: 14

CHAPTER 5

RESULTS & DISCUSSION

5.1 Results

The study performed here consists of parameters analysis their associations and their correlation with each other in-order to reach out the major factors that are the cause of the road accident and find the appropriate solution in order to avoid it and incase unavoidable then how to provide maximum protection with minimum loss and damage.

5.2 Future Scope

The current scope of the project is up-to the analysis phase i.e. analysis can be at a better level of Machine learning and we have a future scope of the project are:

- 1. Neural Networks in Forensic Science.
- 2. Use of image processing in analyzing the accident has happen and giving the information of it to the nearby hospital and police station.
- 3. Using IOT based system to protect the car from the crash etc.

CHAPTER 6 CONCLUSION

6. Conclusion

The aim is to generate association rules that will analyze how to discover hidden patterns that are the root causes for accidents among different combinations of attributes of a larger dataset. Density histograms for visualizing Region wise such as fatal versus weather, fatal versus time, time versus day, fatal versus month, fatal versus traffic, and fatal versus age are performed. Percentage distribution of accidents on various criteria, speed limit and injury severity, distribution of accidents by time of accidents and deceased age, distribution of accidents by month and weather during the accident, distribution of accidents by lightness and speed limit, distribution of accidents by accident type (human factors), distribution of accidents by day of accident and deceased age, distribution of accidents by deceased emotions, distribution of accidents by hospital reported and ambulance used is also made. Future work is to make analysis on road accidents' dataset by considering more features and clusters and also to use deep learning techniques so as to better cluster the records.

References

[1] S.Vasavi, "Extracting Hidden Patterns Within Road Accident Data Using Machine Learning Techniques",2018.

[2] Sannaila Praveen Kumar, M. Prashanti,"Road Accident Data Analysis Using Machine Learning", 2018.

[3] Shrishti Sonal, Saumya Suman," A framework for analysis of road accidents", 2018.

[4] Poojitha Shetty, Sachin P C, Supreeth V Kashyap, Venkatesh Madi, "Analysis of Road Accidents using data mining techniques", in International Research Journal of Engineering and Technology(IRJET), 2017.

[5] Ms. Gagandeep Kaur, Er. Harpreet kaur, Prediction of the cause of accident and accident prone location on roads using data mining techniques, 2017.

[6] Priyanka A. Nandurge, Nagraj V. Dharwadhkar, Analyzing road accident data using machine learning paradigms, 2017.

[7] Miao Chong, Ajith Abraham and Marcin Paprzycki, Traffic accident analysis using machine learning paradigms, 2005.

[8] Road safety and traffic management: Report of the committee Planning Commission, Government of India in February 2007.

[9] Rayle L, Pai M. Scenarios for future urbanization: carbon dioxide emissions from passenger travel in three Indian cities. Transportation Research Record: Journal of the Transportation Research Board, 2193:124–131 (2010).

[10] http://www.deccanchronicle.com/130629/news-current-affairs/article/andhra-pradeshranked- 3rd-road-accidents last accessed June 29th 2013. [online]

[11] https://towardsdatascience.com/train-your-neurons-on-artificial-neural-networks-featuring-keras-2757f51bb7ed. [online]

[12] https://www.geeksforgeeks.org/data-mining-kdd-process/ [online]