

DEPARTMENT OF INFORMATION TECHNOLOGY (IT)

Credit Based Grading System [CBGS - 2012[R]]/ Choice Based Credit and Grading Scheme [CBCGS - 2016[R]]

Module	Chapter	Detailed Content	Syllabus Detailing	Learning Objectives
Module 1	CH 1 Introduction to Artificial Intelligence (Hours -3)	Introduction, History of Artificial Intelligence, Intelligent Systems: Categorization of Intelligent System, Components of AI Program, Foundations of AI, Sub-areas of AI, Applications of AI, Current trends in AI.	 Purpose: To make students understand Artificial Intelligence and History of Artificial Intelligence, Intelligent Systems: Categorization of Intelligent System, Components of AI Program, Foundations of AI, Sub-areas of AI, Applications of AI. Scope – Academic Aspects- Understanding history behind Artificial Intelligence Technology Aspect- Understand subareas and current trends Application Aspect- Understand Applications of AI Students Evaluation – Theory Questions to be asked on Components of AI Program Lab experiments based on technical papers on various applications. Corresponding viva questions can be asked for 	 recall the fundamentals and technological aspects of Categorization of Intelligent System (R) describe the various Architectures of Agent and Foundations of AI, Sub-areas of AI, Applications of AI, Current trends in AI (U) examine Components of AI Program (A) analyze problems wrt environment (AN) compare types of agents

DEPARTMENT OF INFORMATION TECHNOLOGY (IT)

Credit Based Grading System [CBGS - 2012(R]]/ Choice Based Credit and Grading Scheme [CBCGS - 2016(R]]

	CH 2 Intelligent Agents (Hours - 4)	Agents and Environments, The concept of rationality, The nature of environment, The structure of Agents, Types of Agents Learning Agent	Purpose – This chapter gives detail of Agents and Environments, The concept of rationality, The nature of environment, The structure of Agents, Types of Agents, Learning Agent.	
		Agents, Leanning Agent.	Scope – 1. Academic Aspects- Learning the insights of Agents and Environments, The concept of rationality 2. Technology Aspect- The structure of Agents, Types of Agents	
			 3. Application Aspect- Types of Agents, Learning Agent. Students Evaluation Questions on Types of Agents, Agents and Environments, The concept of rationality Corresponding viva questions can be asked for types of Agents, Nature of environment 	
Module 2	Chapter 3 Uninformed Search techniques and Chapter 5 Adversial Search (Hours -7)	Solving Problems by searching: Problem solving agent, Formulating problems, Example Problems. Uninformed search methods: Breadth First Search (BFS), Depth First Search (DFS) , Depth Limited Search, Depth First Iterative Deepening(DFID) Adversarial Search: Games Ontimal strategies	 Purpose- This chapter is focused on the Solving problem by Searching: Problem Solving Agent, Formulating Problems, Example Problems. Uninformed Search Methods: Breadth First Search (BFS), Depth First Search (DFS), Depth Limited Search, Depth First Iterative Deepening(DFID), Informed Search Methods: Greedy best first Search, A* Search, Memory bounded heuristic Search. 	 List uninformed search methods. (R) Tabulate complexity of uninformed search methods (R) Express the concept of Breadth First Search (BFS),
		The minimax algorithm, Alpha-Beta Pruning.	Scope – 1. Academic Aspects- Learn to formulate example problems and solve by Searching	Depth First Search (DFS), Depth Limited Search, Depth First Iterative Deepening

DEPARTMENT OF INFORMATION TECHNOLOGY (IT)

Credit Based Grading System [CBGS - 2012[R]]/Choice Based Credit and Grading Scheme [CBCGS - 2016[R]]

			2. Technology Aspect- Technology behind uninformed	(DFID. (U)
			and informed search	
			3. Application Aspect- Students should understand	4. Apply Greedy best first
			problems where these algorithms can be applied	search and A* algorithm on
			Students Evaluation –	real problems (A)
			1. Theory Questions to be asked on Solving Problems by	
			searching	5. Distinguish various
			2. Lab experiments based on uninformed and informed	uninformed search methods
			search methods	(AN)
			3. Corresponding viva questions can be asked for BFS,	
			DFS, DLS, DFID, GBFS, A* search, MBHS	6. Summarize informed and
				uninformed search methods
				(E)
Module	Chapter 4		Purpose- This chapter is focused on Local Search	1. Describe Local Search
3	Informed Search	Local Search Algorithms and Optimization	Algorithms and Optimization Problems: Hill climbing	Algorithms (R)
	Methods (Hours -	Problems: Hill-	search Simulated annealing. Local beam search. Genetic	2. Summarize Local Search
	8)	Genetic algorithms.	algorithms. Adversarial Search: Games. Optimal strategies.	Algorithms (U)
	~,	Informed Search Methods: Greedy best first	The minimax algorithm, Alpha-Beta Pruning	3. Apply Local Search

DEPARTMENT OF INFORMATION TECHNOLOGY (IT)

Credit Based Grading System [CBGS - 2012(R]]/ Choice Based Credit and Grading Scheme [CBCGS - 2016(R]]

		Search, A* Search, Memory bounded heuristic	Scope -	Algorithms (A)
		search	1. Academic Aspects-	 Compare various Local
		bearen	Student will study problems where regular search	Search Algorithms (AN)
			algorithms fail	5. Apply alpha beta pruning
			2. Technology Aspect-	(A)
			Students will learn technology behind design of computer	6. Write solution to Hill
			games	climbing problem (R)
			3. Application Aspect-	
			Students shall be able to design optimization algorithms and	
			game playing algorithms	
			Students Evaluation –	
			1. Theory Questions to be asked on Local search and	
			Genetic Algorithms	
			2. Lab experiments based on Local search, genetic	
			algorithm, adversarial search	
			3. Corresponding viva questions can be asked for Hill	
			climbing, Alpha beta pruning	
Module	Chapter6 -	Knowledge based Agents The Wumpus World	Purpose – This chapter is focused on Knowledge based	
4	Knowledge and	Knowledge based Agents, The wumpus world,	Agents, The Wumpus World, The Propositional logic, First	1. Describe Wumpus World
	Reasoning	The	Order Logic: Syntax and Semantic, Inference in FOL,	<u>(R</u>)
	(Hours -8)	Propositional logic, First Order Logic: Syntax	Forward chaining, backward Chaining.	2. Distinguish Propositional
		and Semantic,	Scope –	and Predicate Logic (U)
		Inference in FOL, Forward chaining, backward	1. Academic Aspects- The objective is to represent	3. Apply Logic to English
		Chaining, Knowledge Engineering in First-	knowledge and infer from it	statements (A)
		Order Logic Unification	2. Technology Aspect-	4. Compare various Local
		Didei Logic, Onnication,	Students will learn PROLOG as a tool to develop LOGIC	Search Algorithms (AN)
		Resolution, Introduction to logic programming	3. Application Aspect-	5. Conclude from given
		(PROLOG).	Students shall be able to infer solution using PROLOG to a	representation (E)

DEPARTMENT OF INFORMATION TECHNOLOGY (IT)

Credit Based Grading System [CBGS - 2012[R]]/ Choice Based Credit and Grading Scheme [CBCGS - 2016[R]]

			no. of problems	6. Create knowledge
			Student Evaluation -	representation of given
			1. Theory Questions to be asked on Logic	problem (C)
			2. Lab experiments based on unification	
			3. Corresponding viva questions can be asked for Prolog	
Module	Chapter 7		Purpose – This chapter is focused on formulating planning	. <mark>Tabulate</mark> various forms of
5	Planning (Hours		problem and finding solution to it	learning (R)
	-5)		Scope –	2. Describe architecture of
			1. Academic Aspects-	Expert system (U)
			Students should know how to plan for solution	3. Apply decision tree to
			2. Technology Aspect-	problem (A)
			Students should learn technology behind various types of	4. <mark>Design</mark> and <mark>develop</mark>
			plans	various Natural Language
			3. Application Aspect-	Processing (NLP), Expert
			Students should be able to apply planning to real world	Systems. (C)
			problems	5. Compare Expert System
		The alexandre angle Disaria society state and a	Student Evaluation –	with Traditional System (AN)
		The planning problem, Planning with state space	1. Theory Questions to be asked on Planning	6. Choose among various
		search, Partial order planning, Hierarchical	3. Corresponding viva questions can be asked for types of	forms of learning (E)
		planning, Conditional Planning.	planning	
	Chapter 9		Purpose – This chapter is focused on formulating learning	
	Learning		problem and finding solution to it	
	(Hours -4)		Scope –	
			1. Academic Aspects- Students should know how to	
			integrate learning in system	
		Learning: Forms of Learning, Inductive	2. Technology Aspect- Students are able to understand	
		Learning, Learning, Decision Tree.	decision problems	

DEPARTMENT OF INFORMATION TECHNOLOGY (IT)

Credit Based Grading System [CBGS - 2012[R]]/Choice Based Credit and Grading Scheme [CBCGS - 2016[R]]

			3. Application Aspect- Students will be able to apply	
			decision making through learning in real world	
			Student Evaluation –	
			1. Theory Questions to be asked on Learning	
			2. Lab experiments based on Decision tree	
			3. Corresponding viva questions can be asked for types of	
			learning	
	Chapter 8		Purpose – This chapter is focused on dealing with	
	Uncertainty		uncertain knowledge	1. Distinguish Partial Order,
	(Hours -5)		Scope –	Hierarchical and Conditional
			1. Academic Aspects- Representation of uncertain	Plan (U)
			knowledge for real world scenario	2. Design Belief Network (C)
			2. Technology Aspect- Belief N/W	3. Draw Partial Order Plan
		Uncertain Knowledge and Reasoning:	3. Application Aspect- Problems in real world have	(AN)
		Uncertainty Representing knowledge in an	uncertain knowledge	4. Compare Hierarchical and
		Uncertainty, Representing Knowledge in an	Student Evaluation -	conditional planning (AN)
		uncertain domain, The semantics of belief	1. Theory Questions to be asked on uncertainty	5. Conclude from belief n/w
		network, Inference in belief network.	3. Corresponding viva questions can be asked for belief	(E)
			networks	6. Write Baye's rule (R)
Module	Chapter 10	Natural Language Processing (NLP), Expert	Purpose – This chapter is focused on studying applications	
6	Expert System	System: Introduction, Phases in building Expert	of AI and learning to design them	1. Tabulate various forms of
	(Hours -4)	Systems, ES Architecture, ES vs Traditional	Scope –	learning (R)
		System.	1. Academic Aspects- The chapter focuses on	2. Describe architecture of
			Applications of AI	Expert system (U)
			2. Technology Aspect- Students are able to learn	3. Apply decision tree to
			technology behind developing an Expert system and NLP	problem (A)
			sysytem	4. Design and develop
			3. Application Aspect- System will be able to design	various Natural Language

DEPARTMENT OF INFORMATION TECHNOLOGY (IT)

Credit Based Grading System [CBGS - 2012[R]]/Choice Based Credit and Grading Scheme [CBCGS - 2016[R]]

	Expert system and NLP system	Processing (NLP), Expert
		Systems. (C)
	Student Evaluation –	5. Compare Expert System
	1. Theory Questions to be asked on Expert system and NLP	with Traditional System (AN)
	3. Corresponding viva questions can be asked on types of	6. Choose among various
	Expert system and NLP stages	forms of learning (E)