

TCET DEPARTMENT OF INFORMATION TECHNOLOGY (IT) Credit Based Grading System [CBGS - 2012[R]]/Choice Based Credit and Grading Scheme [CBCGS - 2018[R]]

ice

University of Mumbai

D. Syllabus Detailing and Learning objectives

Module	Chapter	Detailed Content	Syllabus Detailing	Learning Objectives
Module1	Introductio n to Data structures and Analysis (06 Hours)	Introduction to Data structures,Need of Data structures,Types of Data structures : Linear and non linear data structures Arrays, Stacks,Queue,Linked listand Tree,Graph,Recursion, ADT (Abstract Data type). Introduction toAnalysis,Algorithms, characteristics of an algorithms,Time and Space complexities, Order of growth functions, Asymptotic notations	 Purpose: To know various ADT's(Abstract Data Types), and to do analysis of an algorithm with its use in real time applications along with the implementations Scope – Academic Aspects- Understanding various Data structures, characteristics of an efficient algorithm and ways to represent algorithm complexity. Technology Aspect- Programing using C Application Aspect- to find suitable data structure based on application need. Students Evaluation – Theory Questions to be asked on What is ADT. List various ADT's Llist characteristics of efficient Algorithm Explain various asymptotic notations used to represent complexity of an algorithm 	 To describe various ADTS.(U) To Distinguish linear and nonlinear data structures.(AN) To determine complexity of an algorithm.(AN)
Module 2	Stack (05Hours)	Introduction to Stack, Stack as ADT, Operations on stack, Application of stack: – reversing string, Polish	 Purpose- To understand Stack as ADT. To implement stack operations and its applications like recursion, postponement data usage etc. Scope – Academic Aspects- understanding use of stack in various applications. 	 1.Define Stack.(R) 2. Explain operations and applications of stack (R) 3. Interpret stack to covert infix expression to postfix expression(A)

TCET DEPARTMENT OF INFORMATION TECHNOLOGY (IT

Credit Based Grading System [CBGS - 2012[R]]/Choice Based Credit and Grading Scheme [CBCGS - 2016[R]] University of Mumbai

2. Technology Aspect- Using C Programming notations (PCB), Language Threads. Thread 3. Application Aspect- Developing data management. postponement usage using stack **Process Scheduling:** Types, Comparison of Students Evaluation -1. Define Stack different scheduling 2. List Operations of Stack policies. 3. Discuss Applications of Stack? 4.Implement Stack and its applications using static and dynamic memory allocation techniques Queue 1.Define Queue.(R) Modul Introduction Purpose – to 2. Explain operations and applications of (06 Hr) To understand Queue as ADT. To implement e 3 Oueue, Oueue as ADT, Queue (R) Queue operations and its applications like Operations on Queue, 3. Interpret Queue to implement various types processes scheduling algorithms Linear representation of of scheduling algorithms(A) Scope – queue, Circular Queue, 1. Academic Aspects- understanding use of De-Priority Queue, Queue in various applications. queue, 2. Technology Aspect- Using C Programming Application of Queues Language 3. Application Aspect- Developing Process Scheduling algorithms using Queue Students Evaluation -1. Define Queue 2. List Operations of Queue 3. Discuss Applications of Queue? 4.Implement Queue and its applications using static and dynamic memory allocation techniques

TCET

DEPARTMENT OF INFORMATION TECHNOLOGY (IT) Credit Based Grading System [CBGS - 2012[R]]/Choice Based Credit and Grading Scheme [CBCGS - 2018[R]] University of Mumbai

tcel

Fant Stot

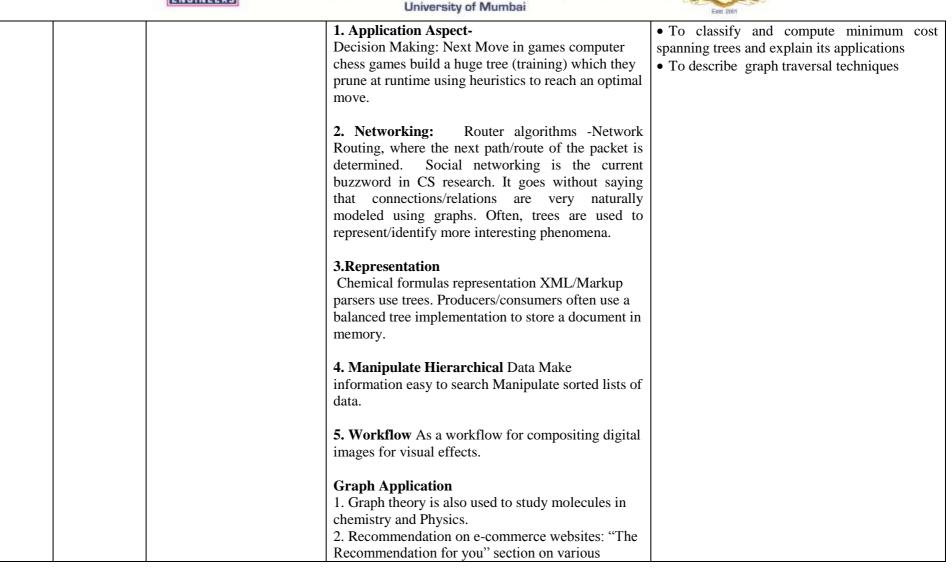
Module 4	Linked List (8 Hours)	Introduction to Linked List, Basic concept of Linked List, Memory allocation&de allocation de allocation of Linked list, Singly Linked list, Doubly Linked list, Circular linked list, Operations on linked list,Linked representation of stack,Linked representation of Queue, Application of linked list.	 Purpose- This chapter is focused on dynamic memory management techniques by implementing various ADT's like List, Stack and Queue. Scope – Academic Aspects- understanding Memory management techniques Technology Aspect- Using C Programming Language Application Aspect- To implement applications like polynomial representations using linked list . Student Evaluation - Describe malloc and calloc What is Linked List (Single, Double and Circular)? Compare Static vs dynamic memory allocation. Explain Applications of Linked List 	 Define malloc and calloc (R) Define types of linked list (U) Explain Compaction (U) Compare Static and Dynamic memory allocation(E) interpret linked list to represent polynomials(A)
Module 5	Sorting and Searching (12 Hours)	Introduction to Sorting: Bubble Sort, Selection Sort, Insertion Sort, Quick Sort, Merge Sort,	Purpose – To apply sorting technique on real world data sets and re-arrange in ascending or descending order so that it is easier and faster to locate items in a sorted list.	Learning Objective: 1. Develop Algorithm and Implement

TCET DEPARTMENT OF INFORMATION TECHNOLOGY (IT) Credit Based Grading System [CBGS - 2012[R]]/Choice Based Credit and Grading Scheme [CBCGS - 2018[R]]

University of Mumbai

Comparison of Techniques Int to Searching: search, Binary Hashing Te Different Hash Collision& resolution te	 external sorting techniques and also different searching methods. 2. Technology Aspect-Many Programming Languages provides API for Sorting and searching the data. 3. Application Aspect- 	ort led ort ing ger ing to run und ers
---	---	---

TCET
DEPARTMENT OF INFORMATION TECHNOLOGY (IT)
Credit Based Grading System [CBGS - 2012[R]]/Choice Based Credit and Grading Scheme [CBCGS - 2016[R]] University of Mumbai



			5.2	1588. (3001
			Student Evaluation – 1.What do you mean by internal and external sorting techniques? 2. Explain algorithm, analysis and code for i)Merge sort ii)Quick sort iii)Radix Sort iv) Insertion sort v) Shell sort. 3. Compare all sorting techniques	
Module 6	Trees &Graph (10 Hours)	Introduction to Trees, Definitions& Tree terminologies, Binary tree representation, Operations on binary tree, Traversal of binary trees, Binary search tree, Threaded Binary tree, Expression tree, Application of Trees Introduction to Graph, Introduction Graph Terminologies, Graph Representation, Type of graphs, Graph traversal: Depth first	 Purpose – To understand how tree (nonlinear data structure) for organizing data objects in terms of hierarchical relationships Scope – Academic Aspects- Student are learning tree basics, types of tree, Designing of algorithm for building BST, tree traversal techniques, AVL tree, graph applications, graph basics, types of graph, representation of graph, graph Traversal Techniques and Minimum cost spanning tree etc. Technology Aspects: Implementation of Trees concepts is used in File system, Design FAT and INODES, data mining and pattern recognition etc. Graph is useful in networking, geographical information system, ecommerce etc. 3 Applications: Tree applications: 	 Learning Objective: Define tree Describe the working and implementation of tree. To describe how trees are used to implement the file system of several popular operating systems. To explain how trees can be used to evaluate arithmetic expressions. To understand how to use trees to support searching operations in O(log n) average time, and how to refine these ideas to obtain O(log n) worst-case bounds. We will also see how to implement these operations when the data is stored on a disk. To define and explain the basics of graph To understand the how to store graph into computer's memory. To learn shortest path algorithms

TCET

DEPARTMENT OF INFORMATION TECHNOLOGY (IT) Credit Based Grading System [CBGS - 2012[R]]/Choice Based Credit and Grading Scheme [CBCGS - 2018[R]]

TCET

DEPARTMENT OF INFORMATION TECHNOLOGY (IT) Credit Based Grading System [CBGS - 2012[R]]/Choice Based Credit and Grading Scheme [CBCGS - 2018[R]]

University of Mumbai

ecommerce websites uses graph theory to recommend items of similar type to user's choice. 3. Google Maps: Various locations are represented as vertices and roads are represented as edges and graph is used to find shortest path between two nodes	
Student EvaluationTree:1.Explain Search and Insertion in BST2.Explain the deletion from BST3.Compute Minimum value in a Binary Search Tree4.Find Inorder predecessor and successor for a	
given key in BST 5.Check if a binary tree is BST or not 6. Find Lowest Common Ancestor in a Binary Search Tree. 7. Find norder Successor in Binary Search Tree 8. Find k-th smallest element in BST	
 9.Merge two BSTs with limited extra space 10.How two nodes of a BST are swapped, correct the BST 11.Find a pair with given sum in a Balanced BST 12.Compute Total number of possible Binary Search Trees with n keys 	
 13.How to Merge Two Balanced Binary Search Trees 14.Conversion from Binary Tree to Binary Search Tree 15.Explain Binary Tree Properties 16.Types of Binary Tree 	

TCET DEPARTMENT OF INFORMATION TECHNOLOGY (IT) Credit Based Grading System [CBGS - 2012[R]]/Choice Based Credit and Grading Scheme [CBCGS - 2016[R]]

ENGINEERS University of Mumbai
17.Applications and uses of tree data structure 18.Describe Tree Traversals technique 19.Compare BFS vs DFS for Binary Tree 20.Explain Threaded Binary Tree 21.Construct Tree from given In order and Preorder
traversals Graph:
1.Develop the algorithm and code for finding shortest Path algorithm using dijiktra's Algorithm
2. Develop the algorithm for Minimum cost spanning trees using Prims' and Kruskal Algorithm
3. Develop algorithm and code for following graph traversal techniques such as BFS and DFS