

D. Syllabus Detailing and Learning objectives

Module	Chapter	Detailed Content	Syllabus Detailing	Learning Objectives
Module 1	odule CH 1 Introduction to Embedded Systems (6-Hours)	Overview of Embedded System Architecture, Application areas, Categories of embedded systems, specialties of embedded systems. Recent trends in embedded systems. Brief introduction to embedded microcontroller cores CISC, RISC, ARM, DSP and SoC	 Purpose: To make students understand basic Embedded Systems and its functional units. Also to make students understand different application areas of Embedded Systems Scope – Academic Aspects- Understanding Embedded System, Its application areas, categories of embedded system, Specialties of Embedded System . Technology Aspect- Understand basics of Embedded Systems Application Aspect- Application of Embedded Systems in real world. Students Evaluation – Theory Questions to be asked on Embedded Systems Case study to be given to differentiate between embedded systems 	 To define Embedded Systems (R) To describe the fundamentals of Embedded System(R) To Comparer RISC & CISC (A) To Differentiate Between General Computing system & Embedded Systems (A) To list various application of Embedded System. (AN)
	CH 2 The Microcontroll er Architecture (08-Hours)	Introduction to 8051 Microcontroller, Architecture, Pin configuration, Memory organization, Input /Output Ports, Counter and Timers, Serial communication, Interrupts.	Purpose – This chapter gives introduction to 8051 microcontroller, its architecture and pin configuration. Detailed insight of memory organization, Input /Output Ports, Counter and Timers, Serial communication and Interrupts.	 To categorize various microcontrollers. [AN] To explain architecture of 8051 microcontroller.[A] Draw he pin diagram of 8051 microcontroller and identify the components in it[R]

TCET DEPARTMENT OF INFORMATION TECHNOLOGY (IT)

Credit Based Grading System [CBGS - 2012[R]]/ Choice Based Credit and Grading Scheme [CBCGS - 2016[R]]

University of Mumbai

			 Scope – Academic Aspects- Understanding the architecture of 8051 microcontroller with different ports. Technology Aspect-Architecture and pin configuration of 8051microcontroller Application Aspect- Application of 8051 microcontroller Students Evaluation Questions on detailed architecture of 8051 can be asked. Pin configuration of 8051 can be draw. Students can explain Counters, Interrupts and memory organization of 8051 microcontroller 	 4. To explain the terms like memory organization, serial communication of 8051. (A) 5. To list different input & output ports of 8051 microcontroller. (AN) 6. To compare microcontroller and microprocessor. (U)
Module 3	Chapter 3 Assembly Language Programmi ng of 8051 (Hours -10)	Instruction set, Addressing modes, Development tools, Assembler Directives, Programming based on Arithmetic & Logical operations, I/O parallel and serial ports, Timers & Counters, and ISR.	 Purpose- This chapter is focused on the details of the 8051 microcontroller, its addressing modes. It also gives detail about development tools and assembler of 8051. It mainly focuses on programming of 8051 microcontroller. Scope – Academic Aspects- Understanding of different instruction set o 8051, different addressing modes, etc Technology Aspect- Students will be able to learn programming of 8051 Application Aspect- Students should understand different instruction set of 8051 Students Evaluation – Theory Questions to be asked on different instruction set of 8051 microcontroller. 	 list addressing mode of 8051 and explain in detail (A) List the instruction set and explain their use. (U) Describe development tools of 8051 microcontroller. (R) Illustrate the working of Timer and Counter.(AN)

TCET DEPARTMENT OF INFORMATION TECHNOLOGY (IT)

University of Mumbai

	Chapter 4	Architectural	Purpose-	1 Name the different addressing modes
	APM 7	inheritance Detailed	This chapter gives the overview of ARM7 architecture. It	and describe in detail. (R)
	anabitaatun	study of Programmers	focuses on Instruction set, addressing modes of ARM7. It	
	architectur	model.	shows how to write assembly language program. It explain	2. Classify the instruction set of ARM7 and
	e	ARM Development	how to handles exceptions & interrupts.	show their usage. (A)
	(Hours -10)	tools, Instruction set:	Scope -	3 ()
		Data processing, Data	1. Academic Aspects-	3. Draw the architecture of ARM7 and
		transfer, Control flow	Understanding the ARM7 architecture, different types of	determine the role of each component.
		.Addressing modes.	Instruction set, addressing modes.	(AN)
		Writing simple	2. Technology Aspect-	4. Describe the concept of pipelining and
		assembly language	Detailed study of Programmers model.	classify their levels. (U)
		programs. Pipelining,	3. Application Aspect-	
		Brief introduction to	Students should understand how to write assembly language	5. Explain the concept of exception and
		exceptions and	program.	interrupts handling. (E)
		interrupts handling.	Students Evaluation –	
			1. Theory Questions to be asked on ARM7 architecture,	6. Design a assembly language program to
			hierarchy, types of Instruction set, Pipelining.	illustrate various arithmetic operations. (C)
			2. Lab experiments for implementation various operations	
			using RAM7.	
			3. Corresponding viva questions can be asked for Instruction	
			set, Addressing modes.	
Module	Chapter 5 -	Architecture of kernel,	Purpose –	1. To describe the fundamentals and
Э	Embedded /	Task and Task	To make students understand basics of Real Time Operating	technological aspects real time operating
	Real Time	scheduler, Interrupt	system. Also to make students understand concept of kernel,	systems. (R)
	Operating	service	Task and Task scheduler, Interrupt service	
	System	routines, Semaphores,	routines, Semaphores, Mutex, Mailboxes, Message queues,	2. To list and explain different types of
	(Hours -08)	Mutex, Maliboxes,	Event registers, Pipes, Signais, Timers, Memory	operating systems.(U)
		Nessage queues,	management.	2. To draw and avalain the creditacture of
			Scope –	s. To uraw and explain the architecture of kernel (P)
		Signale Timore	Linderstanding basics of Basil Time Operating system	
		Memory management	2 Technology Aspect	1 Compare I/O data transfer techniques
		Priority	Linderstand basics concent of kernel Task and Task	and summarize their performance [AN]

TCET DEPARTMENT OF INFORMATION TECHNOLOGY (IT) Credit Based Grading System (CBGS - 2012[R]]/ Choice Based Credit and Grading Scheme (CBOSS - 2016[R])

University of Mumbai

		inversion problem. Off- the-Shelf Operating Systems, Embedded Operating Systems, Real Time Operating System (RTOS) and Handheld Operating Systems	scheduler, Interrupt service routines, Semaphores, Mutex, Mailboxes, Message queues, Event registers, Pipes, Signals, Timers, Memory management . 3. Application Aspect- Interrupts, peripheral devices ,I/O systems. and their use for computers. Student Evaluation - 1. Theory Questions to be asked on interrupts, peripheral devices, signals and I/O devices. 2. Explaining architecture of kernel.	5. Discuss the need for Memory management. (U)
	Chapter 6 - Embedded	Digital clock, Battery operated smart card	Purpose – To make students understand basics of embedded system.	
Module 6	System -	reader, Automated meter reading system, Digital camera.		 To describe different application of embedded system. (AN) 2 Describe Battery operated smart card reader (AN)
	Design case		 Scope – Academic Aspects- Case study on real world embedded system architecture. Application Aspect- Different application of embedded systems Student Evaluation - Theory Questions to be asked on application of embedded system. 	
	studies			
	(Hours -6)			 3. Explain Digital camera in detail. [U] 4. Discuss Automated meter reading system (A)
				system (A)