APPLIED HYDRAULICS

1. Which of the following statements are true for dimensional analysis?

(A) The functional relationship between dependent and non-dependent variables can be expressed into dimensionless dimensional terms by analysis. (B) It is used change the theoretical equation into dimensionless form. to а (C) quantities It helps the units of from another system. to convert one system to (D) All of the above. 2. Dimensional analysis is useful in (A) checking the physical equation correctness of а (B) determining involved particular phenomenon the number of variables in а (C) determining dimensionless variables the groups from the given

(D) the exact formulation of a physical phenomenon

3. The unit of a physical quantity which does not depend on the unit of any other physical quantity is called

(A)	independent	dimension
(B)	fundamental	dimension
(C)	core	dimension

(D) Finite dimension

4. Which of the following is not a primary quantity?

(A)	Mass
(B)	Temperature
(D)	Temperature

(C) Time

5. What are the dimensions of force?

(B)	M1L1T-1
(C)	M1L2T-2

(D) M1L2T2

6. Which of the following quantities has the dimensions M0L0T0?

(A)	Density
(B)	Stress
(C)	Strain

(D) Strain Rate

M1L-1T-2 is the dimensional formula of (A)

(A)			force
(B)	coefficient	of	friction
(C)	modulus	of	elasticity

(D) energy

7. The dimensional formula of the coefficient of viscosity is

(A)	M1L1T-1
(B)	<i>M-1L2T-2</i>

© M1L1T-1

8. The dimensions of surface tension are

- (A) *M1L1T-2* (B) *M1T-2*
- (C) *M1L2T-2*

(D) *M1L1T-1*

9. The dimensional formula of Relative density is

(A)	M1L-3

M1L1T-1 (B)

(C) M1L1T-2

a) b) c)

	10.	Princip a)	le	of	fluid	mecl	nanics	works Accelerat	s on ing	the	utiliz	zation	of	mass
		b)							-				V	olume
		c) d) Velo	city											WOrk
	11.	The	pro	pulsiv	e	force	dı	rives	the	jet	in	the		
		a)	Ĩ	1]	Backward		5			dir	rection
		b)						Forward					dir	rection
		c)					Pe	erpendicul	ar				dir	rection
		d) Para	llel mo	ovemer	nt									
	12.	The	force	an	nalysis	on	а	curved	vane	is	unders	stood	using_	
		a)				1		Velocity			.1		tri	angles
		b)			Ang	le		10 Vone			the			plate
		c) d) Plate	dimo	ncione				vane						angles
	13	U) I lat	nr	onulsi	on	WOr	ks	on	th	٩	princip	e	of	
	15.	a)	pi	opuisi	011	Newto	n's	011	tii	firs	st		01	law
		b)				Newton	ı's			seco	nd			law
		c)				Newto	n's			thiı	ď			law
		d) Ther	mody	namic	proper	ties								
	14					1 1 .						1.	1	. 10
	14.	How		1S		absolute	, ,	veloci	ty	at	11	ilet	dei	noted?
		a) b)												v V
		c)												¢ 1 C
		d) v												
		16.	The	rela	tive	veloc	ity	is ot	otained	by	the	equa	tion	
a)						u				_		_		V_1
b)														V1
c) d) u/V1														u*V1
	17.		If		the		friction	n	is	ne	glected,		then	
	a)					V_{r1}				>				V_{r2}
	b)					Vr1				<				V_{r2}

c)			Vr1				=	=			V_{r2}
d) Vr1 is	a zero										
18. a)	If	the	pressure V _{r1}	1	remains	a		onstant, >	ther	n _	V _{r2}
b) c) d) Vr1 i S	a zero		Vr1 Vr1				=	=			v _{r2} V _{r2}
19. Throcana)b) False	ugh inlet	t orifices, be	which are	facing taken	the dire	ction o	f motior by	n of the s	hip, the w the	vater fror	n the sea pump. True
20. a) b) c) d) 1- V ₁ 2	The	efficie	ncy	of	the $1-V_2^2$ $1-(V_2^2)$ V_2^2	va: 2/ /	ne	is	given	by	$V_1^2 V_1^2 V_1^2) V_1^2$
 ^{21.} Hydra energy a) b) c) d) Elastic Answer: 	aulic ene c Energy a	ergy is con	nverted in	to anot	ther form i Mechanic Electric Nuclear	n of en s cal al r	ergy by	hydrauli	c machin	es. What	form of that? Energy Energy Energy
22. In a) b) False	hydra	aulic tu	rbines,	inlet	energy	y is	greate	r than	the	outlet	energy. True
23. a) b) c) d) Bragg	Which s law	n p	rinciple Newton	is 's	Farad Charl	used ay es	in se	F	Iydraulic	Т	'urbines? law law law
24. a) b) c) d) To reg	Buckets generate	and Alter Swite To the power	blade ch re	es the egulate	used off	in dire	a ection he	turbine the	are of wind	used	l to: water turbine speed
25 a) b)		is	the ele Roto	ectric	power Therma	obtain al	ed fro dynam	m the nic	energy	of the	water. power power

c) d) Hydr	oelectric	power		Nuclear				power
26. Whi	ich energ	y generate	d in a turbine	e is used to r	un electric p	ower gene	erator linked	to the turbine
a) b) c) d) Kine	tic Energ	у		Mechanica Potential Elastic	1			Energy Energy Energy
27. a) b) c) d) Roto	Hydra -dynamic	aulic machiner	Machines	fall Kinetic	under	the	e cat	egory : Pulverizers machinery Condensers
 28. W a) b) c) d) Kine 	hich kii tic turbin	nd of tu es	rbines chan	ges the p Reaction Impulse Reactive	ressure of	the wate	er entered	through it? turbines turbines turbines
 29. Wh a) b) c) d) React 	nich type tion turbi	e of turbi nes	ne is used Axial	to change Kinetic Impulse	the velocity	v of the	water throu	ugh its flow? turbines turbines turbines
30. a) b) c) d) 9	How	many	types	of	Reaction	turbi	nes a	re there? 5 4 3
 31. a) b) c) d) Intercenting 	cooling d	Centrif evice	ugal Flow	pum Drafting	p regula	is tting	T	a urbomachinery device device
 32. a) b) c) d) Heat 	The variation	main s	functio	n of Varying Pressure Load	nozzle	is	to	temperatures variations variations
33. a) b)	The	main	function	of centr Transfer Transfer	rifugal I	pumps	are to	speed

c) d) Transfer en	lergy	Transfer	r		temperature
34.Centrifugaa)b)c)d) Rotor to dra	l pumps F F I aft	transfer Rotor Fluid Draft	energy to to	from	fluid rotor rotor
35.Which a) b) c) d) Tank pipe	among t	he followi	ng control	the	flow rate? Valve Pump Head
36.Turbines a) b) False	and compressors	work with the	gas, while cen	trifugal pump	transfers energy. True
 37. The a) b) c) d) Pump 	inlet passage	e of water He Ta	entry is ead ail	controlled	by Gate race
38.Centrifuga a) b) False	l pumps are a su	b class of dynan	nic axisymmetric	work absorbing	g turbomachinery. True
 39. Cer a) b) c) d) Fluid 	ntrifugal pu	mps are	used to	o transpor	t Pressure Speed Power
40.Centrifuga a) b) c) d) Mechanica	l pumps Kinetic Hydrodynamic Mechanical l energy to Hydrod	transport energy energy energy ynamic energy	fluids by to to to	converting hydrodynamic kinetic kinetic	energy energy energy