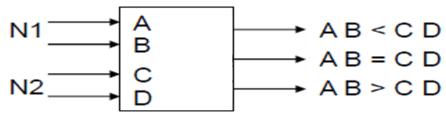
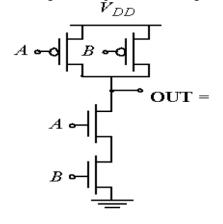
Digital System Design (CBCGS) Mock Paper for September 2020

Q		Μ
1.	The characteristic equation of an S-R flip-flop is	
	a. $Qn+1 = QnR' + S$	
	b. $Qn+1 = QnR + S'$	1
	c. $Qn+1 = R'S$	
•	d. $Qn+1 = QnR' + S'$	
2.	While converting a JK flip-flop to D flip-flop, instead of connecting an inverter between its J and K	
	inputs, a buffer has been connected. The resulting circuit will act as	
	a. JK flip-flop only b. T flip flop	1
	b. T flip-flop	
	c. D flip-flop d. SR flip-flop	
3.	An SR-f/f is created using only two NOR gates with S and R inputs feeding one NOR gate each. If	
5.	both S and R inputs are set to one, the outputs will be	
	a. Q and Q' both 1	
	b. No change in circuit output	1
	c. Q and Q' both 0	
	d. Q and Q' complementary to each other	
4.	The technique where we multiply each digit by 16^n , where <i>n</i> is the "weight" of the digit is	
	a. Hexadecimal to decimal	
	b. Decimal to hexadecimal	1
	c. Binary to hexadecimal	
	d. Octal to hexadecimal	
5.	Which of these methods is not a minimization technique?	
	a. Boolean Algebra	
	b. Karnaugh Maps	1
	c. Truth Table	
	d. Quine Mcluskey	
6.	Identify the law: $(A + B) + C = A + (B + C)$	
	a. Associate Law	1
	b. Distributive Law	1
	c. Commutative Lawd. Redundance Law	
7.	Which of these is De Morgans Theorem	
7.	a. $(X+Y)^2=X^2\cdot Y^2$ and $(X,Y)^2=X^2+Y^2$	
	b. $A + B = B + A$ and $A B = B A$	1
	c. $A + A B = A$ and $A (A + B) = A$	1
	d. $X+X'=1$ and $X,X'=0$	
8.	This is an example of POS equation	
0.	a. $(A+B)(A+C)(B+C)$	
	b. AB+BC+AC	1
	c. $(A+B)C+A(B+C)+B(A+C)$	
	d. A+AB+ABC	
9.	K-map numbering follows which number system	
	a. Binary code	
	b. Gray code	1
	c. ASCII code	
	d. Octal code	
10.	6 6	
	a. AND and NAND	
	b. NAND and NOR	1
	c. OR and NOR	
11	d. AND and OR	
11.		
	VOH is the minimum output high level voltage	1
	VOL is the maximum output low level voltage	


VIH is the minimum acceptable input high level voltage

VIL is the maximum acceptable input low level voltage Then correct relationship is

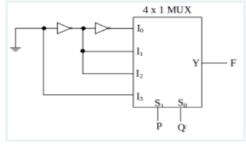

	a. $VIH > VOH > VIL > VOL$	
	b. $VOH > VIH > VIL > VOL$	
	c. $VOH > VIH > VOL > VLL$	
	d. $VOH < VIH < VIL < VOL$	
12.	A full adder can be realized using	
	a. one half adder, two AND gates	
	b. two half adders, one OR gate	1
	c. two half adders, one AND gate	
	d. two half adders, two AND gates	
13.	Which of the following is not a property of CMOS logic gates?	
	a. High switching speed	
	b. Low static power consumption	1
	c. High packing density	
	d. High noise margin	
14.	The race around condition occurs in a J-K flip-flop when	
17.	a. both inputs are 0	
	b. both inputs are 1	1
	c. the inputs are complementary	1
	d. $J=0$ and $K=1$	
15.	Which of the following statements is false regarding signals and variables in VHDL?	
15.	a. Signals must be declared inside a process.	
	b. Signals follow the notion of 'event scheduling'	1
		1
	c. Variables get updated instantaneously without any delay.d. VHDL is a hardware description language	
16.	VHDL and Verilog are	
10.	a. Software description language	
	b. Assembly language	1
		1
	c. Hardware description language	
17.	d. Design language The number "00101110" when converted to BCD is	
17.	01000110	
	a. 01000110 b. 00100110	2
	c. 01010100	2
	d. 01000111	
18.	Consider a 4-bit adder with inputs $A = \{A3 A2 A1 A0\}$ and $B = \{B3 B2 B1 B0\}$. For which of the	
10.	following input condition no carry-out would be generated. (Assume there is no carry input)	
	a. $A = \{1011\}, B = \{0101\}$	
	b. $A = \{1011\}, B = \{0001\}$	2
	c. $A = \{1011\}, B = \{0100\}$	
10	d. $A = \{1001\}, B = \{0101\}$	
19.	simplify the given boolean expression ABC + A'B + ABC' to minimum numbers of literals	
	a. B	
	b. 1	2
	c. A	
	d. AC	
20.	What is the binary equivalent of	
	27.1875 decimal	
	a. (11011.1101)2	
	b. (11011.0011)2	2
	c. (11101.1001)2	

d. (11011.0001)2

21. This circuit implements

- a. Two-Bit Comparator
- b. Four-Bit Comparator
- c. One-Bit Comparator
- d. Three-Bit Comparator
- 22. Which gate is implemented using this circuit at o/p OUT?

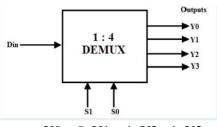
- a. NOR
- b. NAND
- c. AND
- d. OR
- 23. Implement the function of the following truth table

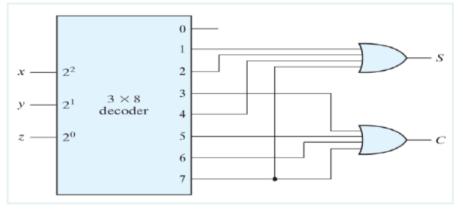

А	В	С	X
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

- a. X=A'B'C+AB'C+ABC'
- b. X=AB'C+AB'C+ABC'
- c. X=A'BC+AB'C+ABC'
- d. X=A'BC+ABC+ABC'
- 24. Convert (25) decimal to hexadecimal
 - a. 31H
 - b. 19H
 - c. 25H
 - d. 33H

2

25.	Convert 101011 ₂ to decimal					
	a. 43d					
	b. 23d	2				
	c. 04d					
	d. 18d					
26.	What is $1FOC_{16} = ?_8$					
	a. 17414					
	b. 14717	2				
	c. 17444					
	d. 17141					
27.	Convert 125 decimal to binary					
	a. 1111101					
	b. 1011101	2				
	c. 1111100					
	d. 0111101					
28.	Two's complement of 1011010100 is					
	a. 100101100					
	b. 100101011	2				
	c. 100101101					
	d. 100100011					
29.						
	a. $x'y'z + xyz' + xyz$					
	b. x'y'z'+x'y'z+xyz	2				
	c. $x^{2}y^{2}+x^{2}y^{2}+xy^{2}z$					
	d. xyz+xyz'+x'yz'					
30.	Identify the output of the following circuit					
	$8 \times 1 \mathrm{MUX}$					
	$C \longrightarrow S_0$					
	$B \longrightarrow S_1$ $A \longrightarrow S_2$					
	A 52					
		-				
		2				
	5					
	16					
	7					
	7					


- a. $F(A, B, C, D) = \Sigma(1, 3, 4, 11, 12, 15)$
- b. $F(A, B, C, D) = \Sigma(1, 3, 4, 11, 12, 13, 14, 15)$
- c. F (A, B, C, D) = $\Sigma(0,2,5,6,7,8,9,10)$ d. F (A, B, C, D) = $\pi(1, 3, 4, 11, 12, 13, 14, 15)$
- 31. Identify the output of the following circuit


- a. $F = P \operatorname{xor} Q$
- b. F = PQ
- c. F = P + Q
- d. $F = P \operatorname{xnor} Q$

2

32. Consider the 1:4 demultiplexer circuit shown. What would be the output bits for input condition S0 = 1, S1 = 1 and Din = 1?

- a. Y0 = 0, Y1 = 1, Y2= 1, Y3 = 1
- b. Y0 = 0, Y1 = 0, Y2= 0, Y3 = 1
- c. Y0 = 0, Y1 = 0, Y2 = 1, Y3 = 0d. Y0 = 0, Y1 = 0, Y2 = 1, Y3 = 1
- 33. Find the function implemented by the following circuit

2

2

- a. Half adder
- b. full subtractor
- c. full adder
- d. Multiplier