Q. No	IPMV set 1 Sept 20	Marks
1	For the 8-level image given below, find the digital negative 1 2 3 4 5 6 2 1 3	2
	(a) 6 5 4 3 2 1 5 6 4	
	(b) 6	
	(c) 6	
	6 5 4 13 2 1 5 6 4	
2	For the 8-level image given below, find the LSB bit plane 1 2 3 4 5 6 2 1 3	2
	(a) 1 0 1 0 1 0 0 1 1	
	(b) 1 0 1 0 0 0 0 1 1	
	(c) 1 0 1 0 1 0 0 1 0	
	(d) 1 0 0 0 1 0	

3	Which of the following is the averaging mask? (a) 1 1 1 1 1 1 1 1 1	2
	-1 -1 -1 -1 -1 -1 -1 -1 -1	
	1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9	
	(d) 1	
4	The mask used for the line detection is given below, -1 -1 -1 2 2 2 -1 -1 -1 if it is rotated by +45 degrees what will it look like	2
	· · · · ·	
	(a) -1 -1 -1 2 2 2 -1 -1 -1	
	(a) -1 -1 -1 2 2 2	
	(a) -1 -1 -1 2 2 2 -1 -1 -1 (b) -1 -1 2 -1 2 -1 2 -1 2 -1	

_	What 2: 22 al2	1
5	What is pixel?	1
	elements of a digital image	
	elements of an analog image	
	cluster of a digital image	
	cluster of an analog image	
6	The range of values spanned by the gray scale is called:	1
	Dynamic range	
	Band range	
	Peak range	
	Resolution range	
7	The edges in gray-level of an image are associated with	1
	High frequency components	
	Low frequency components	
	DC component	
	No component	
8	10. What is the relation of the frequencies to a circle of radius D_0 , where D_0 is the	1
	cut off distance measured from origin of frequency rectangle, for an Ideal High pass	
	filter?	
	HPF sets all frequencies inside circle to zero	
	HPF sets all frequencies inside circle to one	
	HPF sets all frequencies to zero	
	HPF sets all frequencies to one	
9	The absence of receptors is in the retinal area called	1
	Lens	
	Ciliary body	
	Blind spot	
	Fovea	
10	In 4-neighbours of a pixel p, how far are each of the neighbours located from p?	1
	one pixel apart	
	two pixels apart	
	four pixels apart	
	three pixels apart	
11	The distance between pixels p and q, the pixels have a distance less than or equal	1
	to some value of radius r, form a diamond centred at (x,y) is called :	
	Euclidean distance	
	Chessboard distance	
	City-Block distance	
	Village distance	
12	Which of the following is NOT is not a type of Adjacency?	1
	4-Adjacency	-
	8-Adjacency	
	m-Adjacency	
	100-Adjacency	
13	For the given image	2
13	For the given image	4
	2 4 6 7	

		5	2	4	3		
		3	2	6	1		
	Perform Thresholding with T = 4						
	(a)						
	0 0 0 0						
	0 7 7 7 7 0 7 0						
	0 0 7 0						
	(b)						
	0 0 0 0 0 0 0 0 7 7 7						
	7 7 7 7 0 0 7 0						
	(c) 0 0 0						
	0 7 7 7 7 0 7 0						
	7 7 7 7						
	(d)						
	7 7 7 7 0 7 7 7						
	7 0 7 0						
	0 0 7 0						
14	For the given image						2
	Tot the given image						
		1	2	3	0		
		2	4	6	7		
		5	2	4	3		
		3	2	6	1		
	Perform intensity slicing with background (a)	nd wit	th r1	=2 a	and r2	2 =5	
	1 7 7 0 7 7 6 7						
	7 7 7 7						
	7 7 6 1						
	(b) 1 2 3 0						
	2 4 6 7						
	5 2 4 3						

	3 2 6 1	
	(c)	
	1 7 7 6 7 7 6 7	
	7 7 6 7 7 7 7 7	
	7 7 6 6	
	(d)	
	(d)	
	7 7 7 7	
	7 7 7 7 7 7 7	
15	Consider the image:-	2
	A =	
	0 1 0 0	
	0 1 0 0	
	0 1 1 0	
	Let the structuring element B = 1 Perform Erosion	
	Perform Erosion	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	0 0 0 0	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	(b) 1 1 1 1	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	(c) 0 0 0 0	
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	0 0 0 1	

	0 0 0 1		
16	Consider the image:-		2
	A =		
		0 1 1 0	
		1 0 0 0	
	Let the structuring Perform Dilation (a) 1	g element B = 1	
	(b) 1		
	(c) 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0		
	(d) 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1		
17	Consider the image:- A =		2
	A-		
		0 1 0 0	
		0 1 0 0	
		0 1 1 0	
		1 0 0 0	

Perform Opening	g element $B = \boxed{1}$ 1	
(a) 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0		
(b) 1		
(c) 0 0 0 0 0 1 1 1 1 1		
0 1 0 0 0 0 0 0		
$\begin{array}{c ccccc} 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 1 \\ \hline \end{array}$		
18 Consider the image:- A =		2
	0 1 0 0	
	0 1 0 0	
Perform closing	g element B = 1	
(a) 1 0 0 0 1 0 0 0 1 1 0 0		
(b)		
1 1 1 1 0 0 0 0		

	0 0 0 0					
	0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0					
	(d) 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1					
19	Consider the digi	ital ima	ıge.			2
	- - -	0 1 2 0 1 1 1 0 2 5 1 e at poi) 1 1 7) 6 5 6	6 6 5 6 7 =7 for	7 5 6 5 6 Median filter (3x3 window)	
20	Consider the digi	ital ima	nge			2
20	_			16	7	
	<u> </u>	0 1		6	5	
		1 1		5	6	
		1 (6	5	
		2 5		7	6	
	Calculate the valu	e at poi	int $g(2,2)$	=7 for	Min filter (3x3 window)	
	5 0					
	1 6					

		0	1	0	6	7					
		2	0	1	6	5					
		1	1	7	5	6					
		1	0	6	6	5					
		2	5	6	7	6					
	Calculate the val	ue at p	oint g	(2,2)=	7 for	Max	k filte	er (3	x3 v	vindow)	
	5										
	7										
	1 6										
	O										
22	Consider the dig	gital ir	nage.								2
		0	1	0	6	7					
		2	0	1	6	5					
		1	1	7	5	6					
		1	0	6	6	5					
		2	5	6	7	6					
	Calculate the val	ue at p	oint g	(2,2)=	7 for	Ave	rage	filte	er (3:	x3 window)	
	32/9										
	31/9										
	30/9 35/9										
	3317										
23	For the given 4 -c	hain c	ode, 0	21312	2 wha	t is t	he di	iffer	entia	l code?	2
	232212 123212										
	331212										
24	013212	(10.1)) and a	hoso	oordi	noto	s (2 s	6) E	ind	City block distance	2
24	between p and q.	(10,1)	and C	l nas c	oorai	пате	S (2,	о). г	ma	City block distance	2
	15										
	11 12										
	13										
25	n has coordinates	(10.1)	and c	hasc	oordi	nate	s (2 !	8) E	ind (Chess-board distance	2
23	between p and q.	(10,1)	, and C	l nas c	oorar	naic	3 (2,0	5). I	ma	Chess-board distance	2
	8										
	11 12										
	13										
26	For the given ima	ge									2
20	. or the given into	م م									_
						1	2	3	0		

		2	4	6	7		
		5	2	4	3		
		3	2	6	1		
	Perform intensity slicing without backgr	ound	with	r1 :	 =2 an	nd r2 =5	
	(a) 1 7 7 0						
	7 7 0 7						
	7 7 7 7 7 7 0 0						
	(b)						
	1 2 3 0						
	2 4 6 7 5 2 4 3						
	3 2 6 1						
	(c)						
	1 7 7 6 7 7 6 7						
	7 7 7 7 7 7 6 6						
	(d) 1 7 7 7						
	7 7 7 7 7 7 7 7						
	7 7 7 7						
27	For the 8-level image given below, if the 1 2 3	e med	lian f	ilter	is ap	pplied, the result will be	
	4 50 6						
	2 1 3						
	(a) 1 2 3						
	4 3 6						
	2 1 3						
	(b) 6 5 4						
	3 12 1						
	5 6 4						
	(c) 6 5 4						
	3 2 1						
	5 6 14						

	(d) 6	
28	For the 8-level image given below, if the average filter is applied, the result will be 1 2 3 4 50 6 2 1 3	
	1 2 3 4 3 6 2 1 3	
	(b) 6 5 4 3 12 1 5 6 4	
	(c) 6	
	13 2 1 5 6 4	
29	For the 8-level image given below, if the min filter is applied, the result will be 1 2 3 4 50 6 2 1 3	
	1 2 3 4 1 6 2 1 3	
	(b) 6 5 4 3 12 1 5 6 4	
	(c) 6	

	1	2	13	