BE SEM: VII CBCGS-H OC MOCK paper

1.In an optical fiber, the concept of Numerical Aperture is applicable in describing the abili (01)	ity of
a. Light collection	
b. Light scatteringc. Light Dispersion	
c. Light Dispersion d. Light Polarization	
2.The performance characteristics of multimode graded index fibers area) Better than multimode step index fibers.b) Same as multimode step index fibers.c) Lesser than multimode step index fibersd) Negligible	(01)
 3. If a light travel in a certain medium and it gets reflected off an optically denser medium verfractive index, then it is regarded as a. External Reflection b. Internal Reflection c. Both a and b d. None of the above 	with high (01)
4. Snell's law relatesa. light absorptionb. light refractionc. light transmissiond. light diffraction	(01)
 5. When total internal reflection occurs (a) the angle of incidence is greater than 90°. (b) the angle of incidence is greater than the angle of refraction. (c) the angle of refraction is greater than 90°. (d) the angle of incidence is equal to 90°. 	(01)
 6. The expression for refractive index is given by a) N = v/c b) N = c/v c) N = cv d) N = 1/cv 	(01)
 7. Find the refractive index of a medium having a velocity of 1.5 x 10⁸. a) 0.5 b) 5 c) 0.2 d) 2 	(02)

8. A certain optical fiber has the following parameters: core radius of 4 μ m, core and cladding refractive indices of 1.45 and 1.444 respectively, and operating wavelength of 1064 nm. V number of the fiber is (02)

a. 3.11

b. 1.82

c. 2.405

d. 3.5

9. For the fiber given in Problem 8 to act as a single mode fiber, the minimum operating wavelength is (02)

a. 1550 nm

b. 1377 nm

c. 1250 nm

d. 880 nm

10. If a mode propagating in an optical fiber has |Hz| > |Ez| ($Ez \neq 0$, $Hz \neq 0$), the mode is called as a (01)

- a. TM mode
- b. TE mode
- c. HE mode
- d. EH mode

11. If a photo-detector which can detect minimum power of -13 dBm is used at the fiber output and a pulse having launch power of 4 dBm is launched in the fiber having loss coefficient 0.046 km^{-1} , to detect the input pulse the fiber can have maximum length of _____ (02)

a. 85.12 km

- b. 140.2 km c. 35 km
- 1 100 1
- d. 100 km

12. The measurement of dispersion allows the _____ of the fiber to be determined. (01)

- a) Capacity
- b) Frequency
- c) Bandwidth

d) Power

- a. Nonlinear effects
- b. Dispersion
- c. Attenuation
- d. Thermal noise

14. In waveguide dispersion, refractive index is independent of _____ (01)

a) Bit rate

- b) Index difference
- c) Velocity of medium
- d) Wavelength

 15. Determine total channel loss if connector loss at source and detector is 3.5 and attenuation of 5 dB/km. a) 34 dB b) 35 dB c) 36 dB d) 38 dB 	2.5 dB and (02)
16. Signal amplification is obtained ina. Raman fiber systemb. Brillion fiber amplifierc. Erbium doped fluo-zir-carbonate fiber multimoded. Rare earth doped fiber amplifier	(01)
 17. A communication system uses 10 km of fiber that has a 2.5-dB/km loss characteristic. output power if the input power is 400 mW. a. 1.265 mW b. 0.987 mW c. 1.89 mW d. 2.165 mW 	Find the (02)
18. In an eye diagram, digital signals with very bad interference resembles the shape ofa. Circleb. Rectanglec. Triangled. Straight line	(01)
19. Multimode step index fiber hasa) Large core diameter & large numerical apertureb) Large core diameter and small numerical aperturec) Small core diameter and large numerical apertured) Small core diameter & small numerical aperture	(01)
 20. The fibers mostly not used nowadays for optical fiber communication system area) a) Single mode fibers b) Multimode step fibers c) Coaxial cables d) Graded index fibers 	_ (01)
21. A GaAs planar LED emitting at a wavelength of 0.85 μ m has an internal quantum efficience 60% when passing a forward current of 20 mA s ⁻¹ . Estimate the optical power emitted by t	
 a. 18.55 mW b. 17.52 mW c. 18.52 mW d. 16.02 mW 	
 22. A semiconductor diode laser has a peak emission wavelength of 1.55 μm. Find gap in eV. a. 0.68 eV b. 0.92 eV c. 0.78 eV 	its band (02)

d. 0.8 eV

 23. The phenomenon when an excited electron jumps from an energy state E₂ to energy state E₁) without any external energy being supplied is called as a. Absorption b. Stimulated emission c. Spontaneous emission 	$E_1 (E_2 > (01))$
24. In a graded index optical fiber ($\alpha = 2$) having V = 10, the total number of modes guided a	
a. 50 b. 75 c. 25 d. 10	(02)
 25. A simple fiber optic system would consist of: (a) a light source, an optic fiber and a photo-electric cell (b) a laser, an optic fiber and an LED (c) a copper coaxial cable, a laser and a photo-electric cell (d) an LED, a cathode ray tube and a light source 	(01)
 26. Optic fiber is normally made from: (a) coherent glass and xenon (b) copper (c) water (d) silica glass or plastic 	(01)
27. Plastic optic fibers:(a) have lower losses than glass fibers(b) are used in the automobile industry(c) are suitable for long distance communications(d) are used as a form of electrical to optical converter	(01)
 28. If a light ray crosses the boundary between two materials with different refractive indices (a) no refraction would take place if the angle of incidence was 0° (b) refraction will always occur (c) the speed of the light will not change if the incident ray is traveling along the normal (d) the speed of light never changes 	:: (01)
 29. A power level of 50 μW could be expressed as: (a) 1.69 dBm (b) -4.3 dBm (c) 1 dBm (d) -13 dBm 	(02)
 30. Absorption loss is caused by: (a) water absorption (OH-ions) (b) changes in the density of the fiber due to uneven rates of cooling (c) microscopic cracks in the cladding which allow leakage of the vacuum in the core (d) impurities in the fiber 	(01)

(d) impurities in the fiber

 31. Intramodal dispersion: (a) only occurs in multimode fiber (b) is also called chromatic dispersion (c) does not occur in multimode fiber (d) could not occur in an all-plastic fiber 	(01)
 32. A 4 X 4 coupler would have a total of: (a) 16 ports (b) 4 ports (c) 9 ports (d) 8 ports 	(01)
 33. Coupling ratio is also known as: (a) directionality loss (b) coupling loss (c) splitting ratio (d) directivity ratio 	(01)
 34. An APD: (a) can produce visible light as well as infrared light at 850 nm, 1300 nm and 1550 nm (b) has good electrical output in low light conditions (c) has a lower dynamic range than a PIN diode (d) is cheaper than a PIN diode 	(01) 1
 35. The second optical window is centred at	(01)
36. Changing the spectral width of the light source would affect the:(a) fiber bandwidth in a single mode system(b) system bandwidth of a multimode system but not a single mode one(c) aging losses(d) number of likely repairs	(01)
 37.If the transmitter and the receiver rise times were 0.5 ns and 1.5 ns respectively, and time was 25 ps, the system rise time would be approximately: (a) 25.05 ns (b) 1.42 ns (c) 1.58 ns (d) 5.19 ns 	the fiber rise (02)
 38. In an optical fiber, Rayleigh scattering results from	(01)

39. The radiative and non-radiative recombination lifetimes of the minority carriers in the active region of a double heterojunction LED are 70 ns and 90 ns respectively. The total carrier recombination lifetime is ______ (02)

a. 160 ns

b. 39.375 ns

c. 75 ns

d. 90 ns