# End Semester Exam KT

### TE (Semester-VII)

# Discrete Time Signal Processing

- 1. What is the region between stop band and the pass band frequencies in the magnitude frequency response of a low pass filter? (1 mks)
- a) Stop band
- b) Pass band
- c) Transition band
- d) Round Band
- 2. If  $\delta_P$  is the forbidden magnitude value in the pass band and  $\delta_S$  is the forbidden magnitude value in the stop band, then which of the following is true in the pass band region? (2 mks)
- a)  $1-\delta_s \leq |H(j\Omega)| \leq 1$
- b)  $\delta_P \leq |H(j\Omega)| \leq 1$
- c)  $0 \leq |H(j\Omega)| \leq \delta_S$
- d) 1- $\delta_P \leq |H(j\Omega)| \leq 1$
- 3. Value for Twiddle factor  $W_8^0$  is : (1 mks)
  - a. 1
  - b. -1
  - с. -j
  - d. J
- 4. If x(n) is real sequence, then find the missing term of X(K) = { 6, \_\_\_\_, -2, 4-2j } (2 mks)
  - a. -2j
  - b. 6
  - c. 4+2j
  - d. 12

- 5. Find DFT of  $x(n) = \{1, 1, 1, 1\}$  (2 mks)
  - a.  $X(K) = \{0,0,0,0\}$
  - b.  $X(K) = \{5,0,0,0\}$
  - c. X(K)= $\{26, -2+2j, -2, -2-2j\}$
  - d. X(K)= $\{10, -2+2j, -2, -2-2j\}$
- 6. .DFT of x(n)={a,b,c,d} is X(K)={A,B,C,D} then DFT of x{a,0,0,b,0,0,c,0,0,d,0,0} is (2 mks)
  - a.  $X(K) = \{A, B, C, D, A, B, C, D, A, B, C, D\}$
  - b.  $X(K) = \{ 0, 0, 0, 0, A, B, C, D, A, B, C, D \}$
  - c.  $X(K) = \{A, B, C, D, A, B, C, D\}$
- 7. In Overlap save method of long sequence filtering, how many zeros are appended to the impulse response of the FIR filter , If L is the length of input sequence ? (1 mks)
  - a) L/2
  - b) L
  - c) L+1
  - d) L-1
- 8. What is the full form of DIT -DFT? (1 mks)
  - a. Decimation in Time -Discrete Fourier Transform
  - b. Disctrete in Time -Discrete Fourier Transform
  - c. Decimation in Time -Decimation Fourier Transform
  - d. Discrete in Time -Decimation Fourier Transform
- 9. How many complex multiplications are need to be performed for each FFT algorithm? (2 mks)
  - a) (4N/2)logN
  - b) Nlog2N
  - c)  $\frac{N}{2} \log_2 N$
  - d) $\frac{N}{8}\log_2 N$

10. FFT of  $x(n) = \{1, 2, 3, 4\}$  is

a.  $X(K) = \{10, -2+2j, -2, -2-2j\}$ 

- b.  $X(K) = \{10, 20, -2, -2, -2j\}$
- c.  $X(K) = \{6, -2, 4, -2\}$

(2 mks)

- d.  $X(K) = \{6, -2+2j, -2, -2-2j\}$
- 11. For a decimation-in-time FFT algorithm, which of the following is true? (2 mks)
  - a) Both input and output are in order
  - b) Both input and output are shuffled
  - c) Input is shuffled and output is in order
  - d) Input is in order and output is shuffled





- a. Decimation-in-time FFT
- b. Decimation-in-frequency FFT
- c. DFT
- d. FIR
- 13. Which Filter given below has the frequency response maximally flat in the passband (2 mks)
  - a. Butterworth
  - b. Chebyshev type 1
  - c. Chebyshev type 2
  - d. Elliptic
- 14. Normalised Butterworth polynomial of order 1 is given by: (2 mks)

a. 
$$\frac{1}{s+1}$$
  
b.  $\frac{1}{s^2 + \sqrt{2}s + 1}$ 

- c. 1/(s+2)
- d. 1/(s+4)

15. Normalised Chebyshev polynomial of order 1 is given by: (2 mks)

- a. 1/(s+1)
- b.  $1/(s^2+\sqrt{2}s+1)$
- c. 1/(s+2)
- d. 1/(s+4)
- 16. Which Filter given below has ripples in the Stop band in the frequency response (2 mks)
  - a. Butterworth
  - b. Chebyshev type 1
  - c. Chebyshev type 2
  - d. Elliptic

#### 17. Identify the filter from the pass band frequency response given below (2 mks)



- **Butterworth** a.
- b. Chebyshev type 1
- Chebyshev type 2 c.
- d. Elliptic
- 18. Full form of IIR filter is given by:
  - a. Infinite Input Response
  - b. Infinite Impulse Response
  - c. Input Infinite Response
  - d. Impulse Infinite Response

19. Which of the following rule is used in the bilinear transformation? (1 mks)

a) Simpson's rule

(2 mks)

- b) Backward difference
- c) Forward difference
- d) Trapezoidal rule
- 20. Which of the following is not the window technique?

(1 mks)

- a) Rectangular
- b) Triangular
- c) Pentagonal
- d) Kaiser
- 21. Which of the following condition should the unit sample response of a FIR filter satisfy to have a linear phase? (2 mks)
- a) h(M-1-n) n=0,1,2...M-1
- b)  $\pm h(M-1-n) n=0,1,2...M-1$
- c) -h(M-1-n) n=0,1,2...M-1
- d) -h(M-1-n) n=0,-1-,2...-M-1
- 22. Out of the following window functions which has the smallest transition width? (2 mks)
- a. Rectangular
- b. Bartlett
- c. Hamming
- d. Blackman

23. Which of the following windows has a time domain sequence  $h(n)=1-\frac{2\left[n-\frac{M-1}{2}\right]}{M-1}$  (2 mks)

- a) Bartlett window
- b) Blackman window
- c) Hanning window
- d) Hamming window

24. What is the peak side lobe (in dB) for a rectangular window?

#### (2 mks)

- a) -13
- b) -27
- c) -32
- d) -58
- 25. What is the approximate transition width of main lobe of a Rectangular window? (2 mks)
- a) 4π/M
- b) 8π/M
- c) 12π/M
- d) 2π/M
- 26. Which of the following windows has a time domain sequence  $h(n)=12(1-\cos(2\pi n/M-1))?$  (2 mks)
  - a) Bartlett window
  - b) Blackman window
  - c) Hamming window
  - d) Hanning window

27. The \_\_\_\_\_\_effect is not caused due to finite word lengths effect: (1 mks)

- 1) Coefficient quantization error
- 2) Adder overflow limit cycle
- 3) Round off noise
- 4) Inertia

28. What is the process of increasing the sampling rate by a factor I? (1 mks)

- a) Sampling rate conversion
- b) Interpolation
- c) Decimation
- d) Interaction

29. Which process has a block diagram as shown in the figure below? (2 mks)



- a) Sampling rate conversion
- b) Interpolation
- c) Decimation
- d) None of the mentioned
- 30. The representation of (0.7)10 in the binary using 4 bits where first bit is reserved for sign will be \_\_\_\_\_ (2 mks)
- (0101)2
- (1101)2
- (0111)2
- (0011)2
- 31. .Full form of DTMF is :
  - a. Dual Tone Multi Frequency
  - b. Digital Tone Multi Frequency
  - c. Dual Timing Multi Frequency
  - d. Dual Tone Multi Form

(1 mks)