

c) three diodes d) four diodes

 9. The condition for non conducting mode is a) Vds lesser than Vgs b) Vgs lesser than Vds 				
c) Vgs = Vds	= 0	d) $Vgs = Vds = Vs = 0$		
10. nMOS is	;		[1]	
a) donor do	ped	b) acceptor doped		
c) all of the	mentioned	d) none of the mentioned		
11. MOS tra	nsistor structure is		[1]	
a) symmetri	cal b) nor	symmetrical		
c) semi symi	metrical d) pse	udo symmetrical		
12.As source	e drain voltage increase	es, channel depth	[1]	
a) increases		b) decreases		
c) logarithm	ically increases d) exp	onentially increases		
13. If p-tranit is said to va) linear regc) non satur	sistor is conducting and work in ion ation resistive region	I has small voltage between source and drain, then t b) saturation region d) cut-off region	:he [1]	
14. Mobilitya) transversec) Vdd15. NOR typ	y depends on e electric field b) Vg be flash allows t	d) Channel length o be read or written independently	[1] [1]	
a) one mach	iine cycle b) one machin	e word		
c) one mach	ine sentence d) one bit			
16. NAND ty	16. NAND type flash memories are used in			
a) memory o	cards b) USB			
c) solid state	e drivers d) all of the me	ntioned		
17. The tran	sistors in NAND type fl	ash are connected in	[1]	
a) series b)	parallel c) cascade d) ra	indomly		
18. The program erase cycle in flash memory is				
a) finite b) i	nfinite c) all of the men	tioned d) none of the mentioned		

TCET DEPARTMENT OF ELECTRONICS ENGINEERING (ELE) (Accredited by NBA for 3 years, 2 nd Cycle Accreditation w.e.f. 1 st July 2019 Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019	K) teet
19. In Pseudo-nMOS logic, n transistor operates in	[1]
a) cut off region	
b) saturation region	
c) resistive region	
d) non saturation region	
20. The power dissipation in Pseudo-nMOS is reduced to about co	mpared to
nMOS device.	[1]
a) 50%	
b) 30%	
c) 60%	
d) 70%	
21. Pseudo-nMOS has higher pull-up resistance than nMOS device.	[1]
a) true	
b) false	
22. In dynamic CMOS logic is used.	[1]
a) two phase clock	
b) three phase clock	
c) one phase clock	
d) four phase clock	
23. In clocked CMOS logic, output in evaluated in	[1]
a) on period	
b) off period	
c) both periods	
d) half of on period	
24. In clocked CMOS logic, rise time and fall time are	[1]
a) faster	
b) slower	
c) faster first and then slows down	
d) slower first and then speeds up	
25. Clocked sequential circuits are	[1]
a) two phase overlapping clock	
b) two phase non overlapping clock	
c) four phase overlapping clock	
d) four phase non overlapping clock	

26. When both nMOS and pMOS transistors of CMOS logic gates are ON, the output is:

[1]

a) 1 or Vdd or HIGH state
b) 0 or ground or LOW state
c) Crowbarred or Contention(X)
d) Less than Vdd

27. For carry skip adder, the minimum total propogation delay can be obtained when m is

a) sqrt(nk1/k2) b) sqrt(2nk1/k2) c) sqrt(2k1/nk2) d) sqrt(nk1k2/2)	[1]
 28. Multiple output domino logic has a) two cell manchester carry chain b) three cell manchester carry chain c) four cell manchester carry chain d) four cell manchester carry look ahead 	[1]
 29. Which method uses reduced number of partial products? a) Baugh-wooley algorithm b) Wallace trees c) Dadda multipliers d) Modified booth encoding 	[1]
30. Which method is easier to manipulate accumulator content?a) left shiftingb) right shifting	[1]

- c) serial shifting
- d) parallel shifting

31. The CMOS logic circuit for NAND gate is:

a.

с.

[2]

32. What type of logic gate's behaviour does this truth table represent?							
	?						
В	С	?					
0	0	0					
0	1	1					
1	0	1					
1	1	1					
0	0	1					
0	1	1					
1	0	1					
1	1	1					
put Ol ow m a	R a ny b i	b. 3 input OR ts must each word h	c. 3 input EXOR ave in one-to-four line de-m	d. 4 input EXOR			
ement	ed usi	ng a memory?			[2]		
a) 8 bit		b)4 bits	c)2 bits	d)1 bits			
34. A full Adder has							
full A	dder i	nas			[2]		
	B 0 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 0	? B C 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1	R C C B C ? O O O I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	R C C B C ? 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 8 bit	? ? B C ? 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 8 is input OR c. 3 input EXOR ow many bits must each word have in one-to-four line de-multiplexer to be emented using a memory? 8 bit b)4 bits c)2 bits d)1 bits		

35. Determine the Noise Margin for 5V TTL inverter gate:

[2]

5 V VCC 2.4 V VOH 2 V VIH 1.5 V VT 0.8 V VIL 0.4 V VOL 0 V GND 5-V TTL

a) NMH = 0.4V and NML =0.4V
b) NMH = 2.4V and NML = 0.4V
c) NMH = 2V and NML = 0.8V
d) NMH = 1.5V and NML = 0.4V

 36. The switching threshold voltage VTH for an ideal inverter is equal to: a) (VDD-VOL)/2 b) VDD c) (VDD)/2 d) 0 	[2]
 37. In VLSI design, which process deals with the determination of resistance & capacita of interconnections? a. Floorplanning b. Placement & Routing c. Testing d. Extraction 	ince [2]
38. The output of sequential circuit is regarded as a function of time sequence of	[2]
A. Inputs B. Outputs C. Internal States D. External States	
a. A & D	
b. A & C	
c. B & D	
d. B & C	
39. Which method/s of physical clocking is/are a /the recursive structure where the memory elements are grouped together to make the use of nearby or same distribution points?	on [2]
a. H tree	
b. Balanced tree clock network	
c. Random Tree	
d. I tree	
40. For a pseudo nMOS design the impedance of pull up and pull down ratio is	[2]
a) 4:1	
b) 1:4	
c) 3:1	
d) 1:3	
Note: These Questions are only for display purpose	