

D. Syllabus Detailing and Learning objectives

Module	Chapter	Detailed Content	Syllabus Detailing	Learning Objectives
Module 1	Matrices	1.1. Types of Matrices (symmetric, skew- symmetric, Hermitian, Skew Hermitian, Unitary, Orthogonal Matrices and properties of Matrices). Rank of a Matrix using Echelon forms, reduction to normal form, PAQ in normal form, system of homogeneous and non – homogeneous equations, their consistency and solutions. Linear dependent and independent vectors. Application of inverse of a matrix to coding theory.	 Purpose: To make students understand types of matrices, properties, rank of a matrix, system of homogeneous and non-homogeneous system of equations, application of inverse of a matrix to coding theory. Scope – Academic Aspects- Find Rank, solution of homogeneous and non – homogeneous equations, Linear dependent and independent vectors and application of inverse of a matrix to coding theory. Technology Aspect- Sci Lab, Matlab Application Aspect- In Computers, mapping of one system to other, etc Students Evaluation – Theory Questions to be asked on matrices. Tutorial on matrices. Corresponding short questions can be asked on matrices in GATE, GMAT, GRE and aptitude test for placement. 	 List different type of matrices. (R) Discuss theorems on matrices. (U) Illustrate rank of matrices using normal form (U) Use matrices to calculate the solution of homogeneous equation. (A) Use matrices to calculate the solution of non-homogeneous equation. (A) Identify linear dependence and independence of vectors. (A)
Module2	System of Linear Equations,	2.1. Solution of system of linear algebraic equations, by (1)	Purpose: To make students understand solution of system of linear algebraic equations by Gauss Elimination Method, Gauss Jacobi Iteration Method and Gauss Seidal Iteration	 Determine the solutions of system of equations using Gauss elimination method. (A)
	Numerical	Gauss Elimination Method, (2) Gauss	Method, solution of Transcendental Equations by Newton Raphson method and Regula –Falsi Equation,	 Determine the solutions of system of equations using Gauss Siedal method and

TCET DEPARTMENT OF HUMANITIES AND SCIENCES (H&S) Choice Based Credit and Grading Scheme(Revised - 2016) - University of Mumbai CBCGS-2016(R)

	Solutions	Jacobi Iteration	Indeterminate forms and L- Hospital Rule.	Gauss Jacobi method (A)
	of	Method, (3) Gauss	<u></u>	3. Determine the solutions of
	Transcendental	Seidal Iteration	Scope –	Transcendental Equations. (A)
	Equations and	Method. (Scilab	1. Academic Aspects- Solvesystem of linear algebraic	4. DefineL'Hospitals rule. (R)
	Indeterminate	programming for	equations and the transcendental equation andevaluate	5. Evaluate the limits using L'Hospitals rule.
	forms	above methods is to	the limits,.	(U)
		be taught during	2. Technology Aspect- Sci Lab, Matlab	6. Use series expansion to calculate the
		lecture hours)	3. Application Aspect- Calculus and limits involving an	limits. (U)
		2.2. Solution of	algebraic combination of functions, Analytic Geometry.	
		Transcendental	Students Evaluation –	
		Equations: Solution by	1. Theory Questions to be asked on System of Linear	
		Newton Raphson	Equations, Numerical Solutions	
		method and Regula –	Of Transcendental Equations and Indeterminate forms.	
		Falsi Equation.	2. Tutorial onSystem of Linear Equations,	
		2.3. Indeterminate	Numerical Solutions of Transcendental Equations and	
		forms, L- Hospital	Indeterminate forms.	
		Rule, problems	3. Corresponding short questions can be asked on System	
		involving series.	of Linear Equations, Numerical Solutions of Transcendental	
		-	Equations and Indeterminate forms in tutorials, GATE,	
			GMAT, GRE and aptitude test for placement.	
Module 3	Partial	3.1. Partial	Purpose: To make students understand partial derivatives	1. State the definition of partial derivative and
	Differentiation	Differentiation: Partial	of first and higher order, total differentials, differentiation	write higher order partial derivative. (R)
		derivatives of first and	of composite and implicit functions, Euler's Theorem on	2. Discuss various examples on partial
		higher order. Total	Homogeneous functions.	derivative. (U)
		differentials,	Scope –	
		differentiation of	1. Academic Aspects- Find partial derivatives of first and	3. Explain composite functions and derive the
		composite andimplicit	higher orders, total derivatives, differentiation of	on composite functions (11)
		functions.	composite and implicit functions.	
		3.2. Euler's	2. Technology Aspect- Sci Lab, Matlab	4. Explain implicit functions and discuss the
		Theoremon	3. Application Aspect- In finding the absolute and relative	formula for implicit functions . Discuss various
		Homogeneous	extrema of a function, continuity, momentum,	examples on implicit functions.(U)

		functions with two and three independent variables (with proof). Deductions from Euler's Theorem	electrostatics etc. Students Evaluation – 1. Theory Questions to be asked on Partial Differentiation. 2. Tutorial on Partial Differentiation. 3. Corresponding short questions can be asked on Partial Differentiation in GATE, GMAT, GRE and aptitude test for placement.	 5. State the definition of homogeneous functions and write Euler's formula.(R) 6. Illustrate various formulae using Euler's theorem.(A)
Module4	ApplicationsofP artialDifferentia tion,Expansion ofFunctions	4.1 Maxima and Minima of a function of two independent variables, Jacobian. 4.2 Taylor's Theorem (Statement only) and Taylor's series, Maclaurin's series (Statement only). Expansion of , sin(x), cos(x), tan(x), $sinh(x)$, cos(x), tan(x), $sinh(x)$, cosh(x), tanh(x), $log(1+x)$, $sin^{-1}(x)$, $cos^{-1}(x)$, $tan^{-1}(x)$, Binomial series.	 Purpose:To make students understand Maxima and Minima of a function of two independent variables, Jacobian, Taylor's Theorem and Taylor's series, Maclaurin's series, Expansion of ex, sin(x), cos(x), tan(x), sinh(x), cosh(x), tanh(x), log(1+x), sin⁻¹(x), cos⁻¹(x),tan⁻¹(x), Binomial series. Scope – Academic Aspects- Find maxima & minima of a function, Taylor's and Maclaurin's Series, expansion of basic function of x. Technology Aspect- Sci Lab, Matlab Application Aspect- Jacobian, Taylor's series expansion of two variable, Laplace transform of error function etc Students Evaluation – Theory Questions to be asked on Applications of Partial Differentiation, Expansion of Functions. Corresponding short questions can be asked on Applications of Partial Differentiation, Expansion of Partial Differentiation, Expansion of Functions. 	 Explain concept of jacobian of functions(U) Evaluatejacobian of an implicit function(U) Calculate partial derivative of animplicit function usingjacobian.(A) Test the function for maxima and minima. (A) Illustrate expansion of functions using Maclaurin's series. (A) ExplainTaylor's series and compare with Maclaurin's series.(U)

Module	Complex	5.1 Powers and Roots	Purnose To make students understand Powers and Roots	
5	Numbers	of Exponential and Trigonometric	of Exponential and Trigonometric Functions, expansion of $\sin^{n} \theta$, $\cos^{n} \theta$ in terms of sines and cosines of multiples of θ	 State complex numbers and list all the properties of it. (R)
		5.2. Expansion of $\sin^{n}\theta$, $\cos^{n}\theta$ in terms of sines and cosines of	and expansion of sinn θ , cosn θ in powers of sin θ , cos θ , Circular functions of complex number and Hyperbolic functions, InverseCircular and Inverse Hyperbolic	2. Calculate roots of an equation usingDe'Moivre's theorem. (A)
		multiples of θ and Expansion of sinn θ ,	types of Functions.	3. Explain the expansion of trigonometric function. (U)
		$ cosn\theta $ in powers of $sin\theta$, $cos\theta$ 5.3. Circular functions	Scope – 1. Academic Aspects- Find Powers and Roots of Exponential and Trigonometric Functions, Expansion of sin [®]	4.Define hyperbolic functions and list standard formulae for them. (R)
		of complex number and Hyperbolic functions. Inverse	 θ, cos[®] θ, Circular functions of complex number and Hyperbolic functions. 2. Technology Aspect- Sci Lab, Matlab 	5. Define inverse hyperbolic functions and state standard formulae for them. (R)
		Circular and Inverse Hyperbolic functions. Separation of real and	3. Application Aspect - Complex variables, Laplace Transform, Fourier Series etc	6.Identify the real and imaginary parts of complex expressions.(A)
		imaginary parts of all types of Functions.	Students Evaluation – 1. Theory Questions to be asked on Complex Numbers.	
			 2. Tutorial on Complex Numbers. 3. Corresponding short questions can be asked on Complex Numbers in GATE, GMAT, GRE and aptitude test for placement. 	
Module	Logarithm of	6.1. Logarithmic	Purpose: To make students understand Logarithmic	1. Definelogarithm of complex numbers. (R)
6	Complex	functions, Separation	functions, Separation of real and Imaginary parts of	2. Identify the real and imaginary parts of
	Numbers,	of real and Imaginary	Logarithmic Functions, successive differentiation: n ^u	iogantimic expressions.(A)
	Successive Differentiation	Functions. 6.2. Successive differentiation:	Scope – 1. Academic Aspects- Separate real and imaginary parts of	 Definesuccessive differentiation and list standard formulae.(R)
			Logarithmic functions, find n ^{ed} derivative of standard	

TCET DEPARTMENT OF HUMANITIES AND SCIENCES (H&S) Choice Based Credit and Grading Scheme(Revised - 2016) - University of Mumbai CBCGS-2016(R)

n th derivative of	functions, Leibnitz's Theorem.	4. Determine n th order derivative of a
standard functions.	2. Technology Aspect- Sci Lab, Matlab	function. (A)
Leibnitz's Theorem	3. Application Aspect- Complex Variables, In automation	5. State Leibnitz's theorem and problems on
(without proof) and	and aerospace industry etc	it.(R) 6. Deducen th order derivative at x=0 using
problems	Students Evaluation –	
	1. Theory Questions to be asked on Logarithm of Complex	
	Numbers, Successive	
	Differentiation.	
	2. Tutorial on Logarithm of Complex Numbers, Successive	
	Differentiation.	
	3. Corresponding short questions can be asked on	
	Logarithm of Complex Numbers, Successive Differentiation	
	in GATE, GMAT, GRE and aptitude test for place.	

C.Course Objectives and Course outcomes

			Course Objectives (COB)	Course Outcomes (CO)
Sr.	Module	Chapter	Students shall be able to :	After completion of the course the learner should be able to:
	Module 1	Matrices	COB1. Get familiar with types of Matrices, rank of a Matrix using Echelon forms, reduction to normal form, PAQ in normal form, system of homogeneous and non – homogeneous equations, their consistency and solutions, linear dependent and independent vectors, application of inverse of a matrix to coding theory.	CO1 -Listdifferent type of matrices, discuss theorems on matrices, illustrate rank of matrices using normal form, use matrices to calculate the solution of homogeneous and nonhomogeneous equation, identify linear dependence and independence of vectors.
	Module 2	Indeterminate forms, Numerical Solutions of Transcendental Equations and System of Linear Equations	COB2. Get familiar with indeterminate form, numerical solution of Transcendental equations by Newton Raphson method and Regula–Falsi Equation, solution of system of linear algebraic equations by Gauss Elimination Method, Gauss Jacobi Iteration Method and Gauss Seidal Iteration Method.	CO2 –Define L'Hospitals rule, evaluate the limits using L'Hospitals rule, use series expansion to calculate the limits, determine the solutions of Transcendental Equations, determine the solutions of system of equations using Gauss elimination method, Gauss Siedal method and Gauss Jacobi method.
	Module 3	Partial Differentiation	COB3. Get familiar with partial derivatives of first and higher order. Total differentials, differentiation of composite and implicit functions, Euler's Theorem on Homogeneous functions with two and three independent variables, deductions from Euler's	CO3– State the definition of partial derivative and write higher order partial derivative, discussvarious examples on partial derivative, explain composite functions and derive the composite formula, discuss various examples on composite functions, explain implicit functions and discuss the formula for implicit functions, discuss various examples on implicit functions, state the

TCET DEPARTMENT OF HUMANITIES AND SCIENCES (H&S) Choice Based Credit and Grading Scheme(Revised - 2016) - University of Mumbai CBCGS-2016(R)

			Theorem	definition of homogeneous functions and write Euler's formula, illustrate various formulae using Euler's theorem.
	Module 4	Applications of Partial Differentiation , Expansion of Functions	COB4. Define Maxima and Minima of a function of two independent variables, Jacobian, Taylor's Theorem and Taylor's series, Maclaurin's series, Binomial series.	CO4- Explain concept of jacobian of functionsand evaluate, calculate partial derivative of animplicit function usingjacobian, test the function for maxima and minima, illustrate expansion of functions using Maclaurin's series.
	Module 5	Complex Numbers	COB5. Understand powers and Roots of Exponential and Trigonometric Functions, expansion of sin ⁿ θ , cos ⁿ θ in terms of sines and cosines of multiples of θ and expansion of sin θ , cos θ in powers of sin θ , cos θ , Circular functions of complex number and Hyperbolic functions, InverseCircular and Inverse Hyperbolic functions, Separation of real and imaginary parts of all types of Functions.	CO5- State complex numbers and list all the properties of it, calculate roots of an equation usingDe'Moivre's theorem, explain the expansion of trigonometric function, define hyperbolic functions, define inverse hyperbolic functions, identify the real and imaginary parts of complex expressions.
	Module 6	Logarithm of Complex Numbers, Successive Differentiation	COB6. Understand Logarithmic functions, Separation of real and Imaginary parts of Logarithmic Functions, successive differentiation: n th derivative of standard functions, Leibnitz's Theorem.	CO6 –Define logarithm of complex numbers, identify the real and imaginary parts of logarithmic expressions, definesuccessive differentiation and list standard formulae, determine nth order derivative of a function, state Leibnitz's theorem and problems on it, deduce n th order derivative at x=0 usingLeibnitz's theorem.

