D. Syllabus Detailing and Learning objectives

Module	Chapter	Detailed Content	Syllabus Detailing	Learning Objectives
Module 1	Crystal Structure	1. Introduction to crystallography; Study of characteristics of unit cell of Diamond, ZnS, NaCl and HCP; Miller indices of crystallographic planes & directions; interplanar spacing; X-ray diffraction and Bragg's law; Determination of Crystal structure using Bragg's diffractometer; Frenkel and Schotkey crystal defects; Ionic crystal legancy (3,4,6,8); Liquid crystal phases.	 Purpose: To make students understand the crystal structure, Miller Indices, xray diffraction and crystal defects. Scope – Academic Aspects- To identify the particular type of crystal structure and know their application. : Technology Aspect- students will be able to describe Complicated structures eg. Diamond, ZnS, NaCl and HCP structures. students will be able to calculate interplanar separation distance. Students will be able to analyseLigancy and Critical radius ratio of different crystal structures Application Aspect- Students will be able to recognize and calculate Miller indices of crystallographic planes & directions. students will be able to sketch Miller indices of crystallographic planes & directions and obtain interplanar distance 	 Define polycrystalline solids, crystalline and amorphous crystals. Calculate the number of stoms/ unit cell, atomic radii and packing factor for diamond/HCP lattice. Calculate the "d" spacing of a crystal using h,k,l values of Miller Indices. Analyse the ligancy for different crystals. Identify the critical radius ratio for different crystals. Examine the three phases bofvliquid crystals.

			Students Evaluation –	
			 1.Students Evaluation – 1.Students will be able to formulate braggs diffraction formula which is useful in Determination of crystal structure using X-ray diffraction technique. Students will be able calculate d spacing using X ray diffraction technique 3.students will be able Differentiate Liquid crystals phases. 4. students will be able generalize Liquid crystals phases. 5.students will be able to analyse the point defects and its effects on crystals 	
Module 2	Quantum mechanics	 2.1.Introduction, Wave particle duality; De Broglie wavelength Experimental verification of de Broglie theory; properties of matter waves wave packet, phase velocity and group velocity Physical interpretation of wave function; Heisenberg's uncertainty principle Electron diffraction experiment and Gama ray microscope experiment Applications of uncertainty principle Schrodinger's time dependent & time independent Schrodinger equation 	Purpose- This chapter is focused on quantum mechanical basic theories like DeBroglies Hypothesis, Heisenberg Uncertainity principle etc.Scope – 1. Academic Aspects-To understand the Wave particle duality of light Students will be able to State debroglie hypothesis and Heisenberg uncertainty pribciple 2. Technology Aspect- Student will be able to Describe and derive	 Define wave particle duality Discuss Heisenberg uncertainity principal in one dimensional coordinate system. Discuss phase velocity and group velocity Identify the solution for motion of free particle or the

		Motion of free particles	STDE,STIE	bound particle.
		Particle trapped in one dimensional	3. Application Aspect- Students	
		infinite potential well	will be able to apply STDE for	5. Calculate the uncertainity
			finding the eigen value of a free	in momentum or time for a
			particle or a bound particle.	given particle using
			Students Evaluation –	
			1 Student will be able to Calculate	principie.
			Uncertainties	
			2. Student will be able to analyse	
			the eigen value for time	
			dependent processes for free	
			particle.	
			3. Student will be able to apply the	
			theoretical concepts of	
			Heisenberg uncertainity	
			principle to experimental	
			verification of electron	
			diffraction	
			A Students will be able to apply	
			4. Students will be able to apply	
			the shrodinger time dependent	
			equation to calculate the eigen	
			functions of a free particle	
Module 3	Semiconductor	3.1. Band theory of solids, Classification of	Purpose –	1Define mobility,
	1	semiconductors (direct & indirect band gap,	To understand the concept of Femi	conductivity, current
		elemental and compound); Conductivity,	Earmi lovel	
		mobility, current density (drift & diffusion)		2 Discuss the Fermi Direc
		in semiconductors (n type and n type)	Scope –	Distribution function.(U)
		in semiconductors (in type and p type)	1. Academic Aspects-	
		3.2 Fermi Dirac distribution function; Fermi	Student will study the basic	3. DiscussFermi energy
		energy level in intrinsic semiconductor	parameters such as mobility,	level in intrinsic
			current density and conductivity	semiconductor (U)
			and solve numerical based on this.	4 Evaluate Numerical
			2. Technology Aspect-	based on mobility and
			Fermi Dirac distribution function 3 .	conductivity. (A)
			Application Aspect-	

			Fermi energy level in intrinsic semiconductor. Student Evaluation - 1.Students can be asked to derive relation for Fermi energy level in intrinsic semiconductor 2. Students can be asked to find mobility, conductivity 3. Students can be asked to explain	
Module 4	Semiconductor II	 4.1 Fermi energy level in extrinsic semiconductors; 4.2 effect of impurity concentration and temperature on fermi level; Fermi Level diagram for p-n junction (unbiased, forward bias, reverse bias)4.3 Breakdown mechanism (Zener & avalanche), Hall Effect 4.4 Applications of semiconductors: Rectifier diode, LED, Zener diode, Photo diode, Photovoltaic cell 4.5. BJT, FET. 4.6. SCR., MOSFET 	Band theory of solids. Purpose – This chapter discusses various applications of semiconductors.	 State Hall Effect. (R) Discuss working of FET. (U) Discuss working of SCR.(U) Discuss working of Zener diode.(U) Discuss working of solar cell.(U) Students will be able to solve the problems based on Hall effect.
			Scope – 1. Academic Aspects- Students will learn various applications of semiconductors. 2. Technology Aspect- Hall voltage and Hall coefficient. 3. Application Aspect- BJT, FET, SCR., MOSFET	

			Student Evaluation -1.Students can be asked toevaluate Hall voltage and Hallcoefficient2. Students can be asked toDiscuss working of FET.3. Students can be asked toDiscuss working of SCR.4. Students can be asked to drawFermi level in extrinsicsemiconductors.	
Module 5	Superconducti vity	 5.1. Introduction, Meissner Effect and related problems 5.2. Type I and Type II superconductors. 5.3 BCS Theory (concept of Cooper pair); Josephson effect 5.4 Applications of superconductors- SQUID, MAGLEV 	 Purpose – To learn the actual concept of superconductivity and its types. Scope – Academic Aspects- Students will explore BCS theory to explain the existence of superconductivity. Technology Aspect- Students will understand Type-I, Type-II superconductors. Application Aspect- Maglev, Squid 	 Define critical temperature, critical magnetic field. (R) Discuss BCS theory(U) Discus Meissner Effect.(U) Distuinguish between Type I and Type II superconductors. (A) Discuss Maglev and Squid. (U) Evaluatecritical temperature, critical magnetic field. (A)

			 Student Evaluation – 1.Students can be asked to explain Meissner effect. 2. Students can be asked to explain BCS Theory 3. Students can be asked to explain Maglev and Squid 4. Students can be asked to differentiate between Type I and II superconductors. 	
Module 6.1	Acoustics	 6.1 Basic definitions as Loudness, Intensity, pitch and phon 6.2 Absorption of sound; absorption coefficient; reverberation time and Sabine's formula 6.3 Conditions of good acoustics; Reflection of sound(reverberation and echo) 6.4. Common Acoustic defects, remedies and acoustic materials 	 Purpose – Student shall be able to understand acoustic design of the auditorium Scope – Academic Aspects- Requirements for acoustic design of the hall. Technical Aspect – Echoes, Echelon effect. Application Aspect – Apply remedies tominimize acoustic defects Student Evaluation – Students can be asked to evaluate loudness in dB Students can be asked to evaluate reverberation time. Students can be asked to calculate absorption coefficient. 	 .Define loudness, intensity, absorption, reverberation time. (R) 2. Evaluate loudness and reverberation time. (A) 3.Discuss common acoustic defects and related remedies. (U) 4. Discuss Conditions for good acoustics. (U)

Module		6.5. Magnetostriction effect; Piezoelectric	Purpose –	1. Define magnetostriction
6.2	Ultrasonics	effect;	students will learn production and	effect and Piezoelectric
			applications of Ultrasonic Waves.	effect. (R)
		6.6. Ultrasonic Wave generation;		
		Magnetostriction Oscillator; related problem	Scope –	2. Evaluate resonant
			3. Academic Aspects-	frequency for
		6.7. Ultrasonic Wave generation:	Production of ultrasonic	Magnetostriction and
		Piezoelectric Oscillator: related problems	waves.	Piezoelectric Oscillator.(U)
			4. Technical Aspect – Axes	
		6.9 Applications of ultracopic ways	in Quartz crystal.	3 <mark>.Discuss</mark> construction and
		6.8. Applications of ultrasonic waves	5. Application Aspect –	working of
			Cavitation, Ultrasonic	Magnetostriction oscillator.
			sensors, Non destructive	. (A)
			testing	1 Discuss construction and
			Student Evaluation –	4. Discussion struction and
			1. Students can be asked to	working of Piezoelectric
			evaluate resonant frequency in	oscillator. (A)
			magnetostriction oscillator	5. Discuss Applications of
			2. Students can be asked to	Ultrasonics. (A)
			evaluate resonant frequency in	
			2 Students can be asked to	
			calculate distance of ship from the	
			bottom etc	